Translations:Feature list/5/de: Difference between revisions

From FreeCAD Documentation
(Created page with "* Links Eine vollständiger, [http://en.wikipedia.org/wiki/Open_CASCADE Open CASCADE-Technologie] basierter '''Geometriekernel''' , für schwierige 3D...")
 
No edit summary
Line 6: Line 6:
* [[Image:Feature9.jpg|left]] A [[Robot Workbench|Robot simulation]] module that allows to study robot movements. The robot module already has an extended graphical interface allowing GUI-only workflow.{{clear}}
* [[Image:Feature9.jpg|left]] A [[Robot Workbench|Robot simulation]] module that allows to study robot movements. The robot module already has an extended graphical interface allowing GUI-only workflow.{{clear}}
* [[Image:Feature8.jpg|left]] A [[Drawing Module|Drawing sheets]] module that permit to put 2D views of your 3D models on a sheet. This modules then produces ready-to-export SVG or PDF sheets. The module is still sparse but already features a powerful Python functionality.{{clear}}
* [[Image:Feature8.jpg|left]] A [[Drawing Module|Drawing sheets]] module that permit to put 2D views of your 3D models on a sheet. This modules then produces ready-to-export SVG or PDF sheets. The module is still sparse but already features a powerful Python functionality.{{clear}}
* [[Image:Feature-raytracing.jpg|left]] A [[Raytracing Module|Rendering]] module that can export 3D objects for rendering with external renderers. Currently only supports [http://en.wikipedia.org/wiki/POV-Ray povray] and [http://en.wikipedia.org/wiki/LuxRender LuxRender], but is expected to be extended to other renderers in the future.{{clear}}
* [[Image:Feature-raytracing.jpg|left]] A [[Raytracing Module/de|Rendering]] module that can export 3D objects for rendering with external renderers. Currently only supports [http://en.wikipedia.org/wiki/POV-Ray povray] and [http://en.wikipedia.org/wiki/LuxRender LuxRender], but is expected to be extended to other renderers in the future.{{clear}}
* [[Image:Feature-arch.jpg|left]] An [[Arch Module|Architecture]] module that allows [http://en.wikipedia.org/wiki/Building_Information_Modeling BIM]-like workflow, with [http://en.wikipedia.org/wiki/Industry_Foundation_Classes IFC] compatibility.{{clear}}
* [[Image:Feature-arch.jpg|left]] An [[Arch Module/de|Architektur]] module that allows [http://en.wikipedia.org/wiki/Building_Information_Modeling BIM]-like workflow, with [http://en.wikipedia.org/wiki/Industry_Foundation_Classes IFC] compatibility.{{clear}}
* [[Image:Feature-CAM.jpg|links ]] [[Arbeitsbereich Teile|Teile-Modul]] entwickelt zur mechanischen, maschinellen Bearbeitung, wie Fräsen (CAM computer animated machining) und zur Ausgabe, Anzeige und Anpassung von [http://en.wikipedia.org/wiki/G-code G code].{{clear}}
* [[Image:Feature-CAM.jpg|links ]] [[Path Workbench/de|Arbeitsbereich Pfad]] entwickelt zur mechanischen, maschinellen Bearbeitung, wie Fräsen (CAM computer animated machining) und zur Ausgabe, Anzeige und Anpassung von [https://de.wikipedia.org/wiki/Computerized_Numerical_Control#DIN/ISO-Programmierung_bzw._G-Code G-code].{{clear}}

Revision as of 12:37, 7 April 2018

Information about message (contribute)
This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
Message definition (Feature list)
* [[Image:Feature1.jpg|left]] A complete [http://en.wikipedia.org/wiki/Open_CASCADE Open CASCADE Technology]-based '''geometry kernel''' allowing complex 3D operations on complex shape types, with native support for concepts like [https://en.wikipedia.org/wiki/Boundary_representation Boundary Representation] (BREP), [https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline Non-uniform rational basis spline] (NURBS) curves and surfaces, a wide range of geometric entities, boolean operations and [https://en.wikipedia.org/wiki/Fillet_(mechanics) fillets], and built-in support of [https://en.wikipedia.org/wiki/ISO_10303 STEP] and [https://en.wikipedia.org/wiki/IGES IGES] formats {{clear}}
* [[Image:Feature3.jpg|left]] A full '''parametric model'''. All FreeCAD objects are natively parametric, meaning their shape can be based on [[Property|properties]] or even depend on other objects. All changes are recalculated on demand, and recorded by an undo/redo stack. New object types can be added easily, and can even be [[Scripted_objects|fully programmed in Python]].{{clear}}
* [[Image:Feature4.jpg|left]] A '''modular architecture''' that allows plugin extensions (modules) to add functionality to the core application. An extension can be as complex as a whole new application programmed in C++ or as simple as a [[Power_users_hub|Python script]] or self-recorded [[Macros|macro]]. You have complete access to almost any part of FreeCAD from the built-in '''Python''' interpreter, macros or external scripts, be it [[Topological_data_scripting|geometry creation and transformation]], the 2D or 3D representation of that geometry ([[Scenegraph|scenegraph]]) or even the [[PySide|FreeCAD interface]].{{clear}}
* [[Image:Feature5.jpg|left]] Import/export to '''standard formats''' such as [http://en.wikipedia.org/wiki/ISO_10303 STEP], [http://en.wikipedia.org/wiki/IGES IGES], [http://en.wikipedia.org/wiki/Obj OBJ], [http://en.wikipedia.org/wiki/STL_%28file_format%29 STL], [http://en.wikipedia.org/wiki/Dxf DXF], [http://en.wikipedia.org/wiki/Svg SVG], [http://en.wikipedia.org/wiki/COLLADA DAE], [http://en.wikipedia.org/wiki/Industry_Foundation_Classes IFC] or [http://people.sc.fsu.edu/~jburkardt/data/off/off.html OFF], [http://en.wikipedia.org/wiki/NASTRAN NASTRAN], [http://en.wikipedia.org/wiki/VRML VRML] in addition to FreeCAD's native {{FileName|[[File Format FCStd|FCStd]]}} file format. The level of compatibility between FreeCAD and a given file format can vary, since it depends on the module that implements it.{{clear}}
* [[Image:Feature7.jpg|left]] A [[Sketcher_Workbench|Sketcher]] with integrated constraint-solver, allowing you to sketch geometry-constrained 2D shapes. The constrained 2D shapes built with Sketcher may then be used as a base to build other objects throughout FreeCAD.{{clear}}
* [[Image:Feature8.jpg|left]] A [[TechDraw_Workbench|technical drawing module]] with options for detail views, cross sectional views, dimensioning and others, allowing you to generate 2D views of existing 3D models. The module then produces ready-to-export SVG or PDF files.{{clear}}
* [[Image:Feature-arch.jpg|left]] An [[Arch_Workbench|Architecture module]] that allows [http://en.wikipedia.org/wiki/Building_Information_Modeling Building Information Modeling] (BIM)-like workflow, with [http://en.wikipedia.org/wiki/Industry_Foundation_Classes Industry Foundation Classes] (IFC) compatibility.{{clear}}
* [[Image:Feature-CAM.jpg|left]] A [[CAM_Workbench|CAM module]] dedicated to mechanical machining for [https://en.wikipedia.org/wiki/Computer-aided_manufacturing Computer Aided Manufacturing] (CAM). Using the Path module you may output, display and adjust the [http://en.wikipedia.org/wiki/G-code G code] used to control the target machine.{{clear}}
* [[Image:Feature_spreadsheet.png|left]] An [[Spreadsheet_Workbench|Integrated Spreadsheet]] and an [[Expressions|expression parser]] which may be used to drive formula-based models and organize model data in a central location.{{clear}}
  • Links Eine vollständiger, Open CASCADE-Technologie basierter Geometriekernel , für schwierige 3D Operationen mit schwierigen Formen, direkter Unterstützung von Konzepten wie BREP (boundary representation / 3D-Darstellung durch die Körperflächen), NURBS (non-uniform rational B-spline / beliebige, berechenbare Formen) Kurven und Oberflächen, einem großen Bereich geometrischer Einrichtungen, boolscher Operationen, Abrundungen und eingebauter Unterstützung von STEP und IGES Formaten
  • A full parametric model. All FreeCAD objects are natively parametric, which means their shape can be based on properties or even depend on other objects, all changes being recalculated on demand, and recorded by the undo/redo stack. New object types can be added easily, that can even be fully programmed in Python
  • A modular architecture that allow plugins (modules) to add functionality to the core application. Those extensions can be as complex as whole new applications programmed in C++ or as simple as Python scripts or self-recorded macros. You have complete access from the Python built-in interpreter, macros or external scripts to almost any part of FreeCAD, being geometry creation and transformation, the 2D or 3D representation of that geometry (scenegraph) or even the FreeCAD interface
  • Import/export to standard formats such as STEP, IGES, OBJ, STL, DXF, SVG, STL, DAE, IFC or OFF, NASTRAN, VRML in addition to FreeCAD's native Fcstd file format. The level of compatibility between FreeCAD and a given file format can vary, since it depends on the module that implements it.
  • A Sketcher with constraint-solver, allowing to sketch geometry-constrained 2D shapes. The sketcher currently allows you to build several types of constrained geometry, and use them as a base to build other objects throughout FreeCAD.
  • A Robot simulation module that allows to study robot movements. The robot module already has an extended graphical interface allowing GUI-only workflow.
  • A Drawing sheets module that permit to put 2D views of your 3D models on a sheet. This modules then produces ready-to-export SVG or PDF sheets. The module is still sparse but already features a powerful Python functionality.
  • A Rendering module that can export 3D objects for rendering with external renderers. Currently only supports povray and LuxRender, but is expected to be extended to other renderers in the future.
  • An Architektur module that allows BIM-like workflow, with IFC compatibility.
  • links Arbeitsbereich Pfad entwickelt zur mechanischen, maschinellen Bearbeitung, wie Fräsen (CAM computer animated machining) und zur Ausgabe, Anzeige und Anpassung von G-code.