Transient FEM analysis/ru: Difference between revisions

From FreeCAD Documentation
(Created page with "Анализ МКЭ сейчас ни к чему не приведет, потому что с нашей моделью еще ничего не происходит. Ита...")
(Created page with "Затем мы используем 20px температуру, действующую на грань. Мы выделяем две...")
Line 53: Line 53:
Анализ МКЭ сейчас ни к чему не приведет, потому что с нашей моделью еще ничего не происходит. Итак, давайте добавим немного температуры: используйте [[File:FEM_ConstraintInitialTemperature.svg|20px]] начальную температуру из верстака FEM и установите температуру на 300 K. Здесь нельзя выбрать никакие части модели, так как этот параметр применяется ко всей модели.
Анализ МКЭ сейчас ни к чему не приведет, потому что с нашей моделью еще ничего не происходит. Итак, давайте добавим немного температуры: используйте [[File:FEM_ConstraintInitialTemperature.svg|20px]] начальную температуру из верстака FEM и установите температуру на 300 K. Здесь нельзя выбрать никакие части модели, так как этот параметр применяется ко всей модели.


Затем мы используем [[File:FEM_ConstraintTemperature.svg|20px]] температуру, действующую на грань. Мы выделяем две грани на одном конце полосы (Ctrl + левая клавиша мыши) и нажимаем 'add' в окне задачи. В списке должны появиться две грани объекта Boolean Fragments и маленькие значки температуры на модели. Выставляем температуру 400 К и закрываем окно задач. В начале анализа выбранные грани получат мгновенное повышение температуры от 300 до 400 К. Тепло будет проводиться по металлическим полосам и вызывать изгиб полосы.
Next, we use [[File:FEM_ConstraintTemperature.svg|20px]] temperature acting on a face. We select the two faces at one end of the strip (Ctrl + Left mouse key) and click 'add' in the task window. Two faces of the Boolean Fragments object should appear in the list and little temperature icons on the model. We set the temperature to 400 K and close the task window. At the beginning of the analysis, the selected faces will get an instantaneous temperature rise from 300 to 400 K. The heat will be conducted along the metal strips and cause the bending of the strip.


[[File:Transient FEM Bimetal (4).JPG|700px]]
[[File:Transient FEM Bimetal (4).JPG|700px]]

Revision as of 21:18, 13 December 2020

Other languages:

This documentation is not finished. Please help and contribute documentation.

GuiCommand model explains how commands should be documented. Browse Category:UnfinishedDocu to see more incomplete pages like this one. See Category:Command Reference for all commands.

See WikiPages to learn about editing the wiki pages, and go to Help FreeCAD to learn about other ways in which you can contribute.

Руководство
Тема
Transient FEM analysis
Уровень
Время для завершения
Авторы
FreeCAD версия
Примеры файлов
Смотрите также
None

Background

Создание модели

  1. Начав с пустого проекта FreeCAD, мы построим нашу биметаллическую полосу в верстаке Part
  2. Нарисуйте кубическое твердое тело и переименуйте его в aluminium.
  3. Дайте ему размеры 100 x 10 x 2 мм (длина x ширина x высота).
  4. Создайте второе кубическое твердое 'стальное' тело с такими же размерами
  5. Сместите эту деталь на 2 мм по оси Z (через Placement → Position → z).
  6. Выберите оба твердых тела (с помощью клавиши Shift + щелчок мышью) и создайте из них Boolean Fragments
  7. Переименуйте эти логические фрагменты в биметаллическую полосу
  8. В Редакторе свойств мы меняем режим с ВидStandard на ВидCompSolid. (Это также должно работать с использованием команды Part Compound вместо Boolean Fragments, однако с более сложными пересекающимися формами позже могут возникнуть проблемы с анализом МКЭ. Так что лучше сначала привыкнуть к использованию Boolean Fragments.) Результат должен выглядеть следующим образом:

Подготовка и выполнение расчёта по МКЭ

Назначение материалов

В верстаке FEM мы создаем новый анализ и добавляем новый материал в анализ. В появившемся окне задач выбираем один из предустановленных алюминиевых сплавов. В 'geometry reference selector' мы назначаем нижней полосе нашей модели материал, устанавливая режим выбора 'solid', щелкая 'add' и выбирая грань или край нижней полосы. В представлении списка должно появиться 'BooleanFragments:Solid1'.

Мы закрываем окно задачи и повторяем шаги для создания второго материала 'Steel' (карта материала «CalculiX-Steel») и назначаем его верхней полосе ('BooleanFragments:Solid2').

Создание сетки

Поскольку конечно-элементному анализу, очевидно, нужны элементы для работы, мы должны разделить нашу модель на так называемую сетку. Верстак FEM предлагает два инструмента построения сетки: Netgen и GMSH. Здесь мы перейдем к Netgen: с выбранным объектом Boolean Fragments биметаллической полосы мы щелкаем по значку Netgen в верстаке FEM. В появившемся окне задач нам надо сделать различные выделения, начиная сверху:

  • Max. size - это максимальный размер (в миллиметрах) элемента. Чем меньше максимальный размер элемента, тем больше элементов мы получаем - обычно результат будет более точным, но с резким увеличением времени вычислений. Мы устанавливаем его на 10.
  • Second order означает, что в каждом элементе будут созданы дополнительные узлы. Это увеличивает время вычислений, но обычно это хороший выбор, если речь идет о сгибании, как в нашем анализе. Мы оставляем это отмеченным.
  • Fineness: Выберите, насколько точно модель должна быть разрезана на элементы. Для более сложных моделей с кривизной и пересечениями мы можем увеличить количество элементов в этих областях, чтобы получить лучшие результаты (конечно, за счет большего количества вычислительного времени). Опытные пользователи также могут установить для него значение User-defined и установить следующие параметры. Для нашей простой прямоугольной модели выбор тонкости не имеет большого значения, мы оставляем его на умеренном уровне.
  • Optimize: некоторая постобработка после построения сетки. Мы оставляем это отмеченным.

Щелчок по 'Apply' запускает создание сетки, и - время зависит от вашего компьютера - на нашей модели появляется каркас. Генератор сетки должен был создать около 4000 узлов.

Задание граничных условий

Анализ МКЭ сейчас ни к чему не приведет, потому что с нашей моделью еще ничего не происходит. Итак, давайте добавим немного температуры: используйте начальную температуру из верстака FEM и установите температуру на 300 K. Здесь нельзя выбрать никакие части модели, так как этот параметр применяется ко всей модели.

Затем мы используем температуру, действующую на грань. Мы выделяем две грани на одном конце полосы (Ctrl + левая клавиша мыши) и нажимаем 'add' в окне задачи. В списке должны появиться две грани объекта Boolean Fragments и маленькие значки температуры на модели. Выставляем температуру 400 К и закрываем окно задач. В начале анализа выбранные грани получат мгновенное повышение температуры от 300 до 400 К. Тепло будет проводиться по металлическим полосам и вызывать изгиб полосы.

Before we can run the analysis, an additional boundary condition has to be set: The analysis can only run, if our model is fixed somewhere in space. With we select the same two faces as for the 400 K above, and add them to the list. Red bars will appear on the model, visualising that those faces are fixed in space and not able to move around during the analysis.

Running the analysis

The analysis should already contain a solver object 'CalculiXccx Tools'. If not, we add one by using the solver icon from the toolbar. (There are two identical icons, the experimental solver should also work.) The solver object has a list of properties below in the left section of the window. Here we select the following options (leave the ones unmentioned unchanged):

  • Analysis Type: We want to run a thermomechanical analysis. Other options would be only static (no temperature effects), frequency (oscillations), or only to check the model validity.
  • Thermo Mech Steady State: Steady state means, the solver will return one single result with the physics reaching equilibrium. We do NOT want to do that, we would like to get multiple, time-resolved results (transient analysis). So set it to false.
  • Time end: We would like our analysis to stop after 60 seconds (i.e., simulation time, not real time).

After double-clicking the solver object, we check that 'thermomechanical' is selected and run 'write .inp file'. This usually takes some seconds (or a lot more for bigger models) and returns a message 'write completed' in the box below. Now we start the calculation with 'run CalculiX'. After some time, the last messages 'CalculiX done without error!' and 'Loading result sets...' should appear. When the timer at the bottom has stopped, we close the task window. (With larger models and/or slower computers, FreeCAD may freeze and we won’t see the timer running. But be patient, in most of the cases, CalculiX is still running in the background and will eventually produce results.)

We should now have multiple FEM result objects listed. By double-clicking, we can open each one of it and visualise the calculated temperatures, displacements, and stresses. We can visualise the bending by selecting 'Show' in the 'Displacement' section. Since the absolute displacements are small, we use the 'Factor' to exaggerate the values.

Within FreeCAD, we can use pipelines to do some post-processing of the results. Alternatively, we can export the results in the VTK format and import them into dedicated post-processors like ParaView. For the export of multiple results (as for this analysis), there is a macro available.

Загрузки

Другие примеры

  • Analytical bimetall example. The analytical example presented in the forum is included in FreeCAD FEM examples. It can be started by Python with
from femexamples.thermomech_bimetall import setup
setup()


Template:Tutorials navi/ru