Sketcher Diminuer la multiplicité d'un nœud

From FreeCAD Documentation
Revision as of 21:07, 18 December 2020 by David69 (talk | contribs)

Sketcher Moins de nœuds d'une B-spline

Emplacement du menu
Sketch → Sketcher B-spline tools → Diminuer la multiplicité
Ateliers
Sketcher
Raccourci par défaut
Aucun
Introduit dans la version
0.17
Voir aussi
Sketcher Multiplicité des nœuds d'une B-spline, Sketcher Plus de nœuds d'une B-spline

Description

Diminue la multiplicité de nœud d'un nœud de courbe B-spline (voir [1]).

Les B-splines sont essentiellement une combinaison de courbes de Bézier (bien expliqué dans ces vidéos bE1MrrqBAl8 ici et ici). Les points où deux courbes de Bézier sont connectées pour former la spline sont appelés nœuds. Un nœud sur une spline de degré d avec la multiplicité m signifie que la courbe à gauche et à droite du nœud a au moins une dérivée d'ordre n égale (appelée Cn continuité) alors que n = dm.
Voici une spline dont les nœuds ont la multiplicité 1 (indiqué par le nombre entre parenthèses,
l'indication peut être modifiée à l'aide du bouton de la barre d'outils Afficher/masquer la multiplicité des nœuds B-spline):

B-spline où les deux nœuds ont la multiplicité 1.

A multiplicity of 3 will change this spline so that even the first order derivatives are not equal (C0 continuity). Here is the same spline where the left's knot multiplicity was increased to 3:

B-spline from above with knot multiplicity 3. A control point was moved to show that the knot has C0 continuity.

A consequence of a higher multiplicity is that for the price of loosing continuity you gain local control. This means the change of one control point only affects the spline locally to this changed point. This can be seen in this example, where the spline from the first image above was taken and its second control point from the right side was moved up:

Effect of locality due to different multiplicity.

One can see that the spline with knot multiplicity 1 is completely changed while the one with multiplicity 2 kept its form at its left side.

Note: If you decrease the multiplicity, the knot vanishes, because mathematically it appears then zero times in the knot vector, meaning there is no longer a basis function. Understanding this, requires some math, but it will also be clear when you look at the multiplicity: For example degree = 3 then multiplicity = 0 means that at the position of the knot two Bézier pieces are connected with C3 continuity. So the third derivative should be equal on both sides of the knot. However for a cubic Bézier curve (that is a polynom with degree 3) , this means both sides must be part of the same curve. So there is then actually no longer a knot connecting 2 different Bézier curves, the former knot is then simply a point onto one Bézier curve.

Utilisation

  1. Sélectionnez un nœud B-spline
  2. Lancez l'outil à l'aide de plusieurs méthodes:

Note: Decreasing the multiplicity from 1 to 0 will remove the knot since the result would be a curve with an "edge" at the knot position (C0 continuity) and this is not supported. (To create curves with an "edges", you can create two splines and connect them.)