Difference between revisions of "Sketcher BSplineDecreaseKnotMultiplicity/de"
(Created page with "{{Caption|B-spline curve zeigt abnehmende Knoten Vielzahl.}}") |
(Updating to match new version of source page) |
||
(16 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<languages/> | <languages/> | ||
− | {{Docnav|[[Sketcher_BSplineIncreaseKnotMultiplicity| | + | <div class="mw-translate-fuzzy"> |
+ | {{Docnav/de | ||
+ | |[[Sketcher_BSplineIncreaseKnotMultiplicity/de|Knotenvielfalt erhöhen]] | ||
+ | |[[Sketcher_SwitchVirtualSpace/de|Virtuellen Raum wechseln]] | ||
+ | |[[Sketcher_Workbench/de|Skizzierer]] | ||
+ | |IconC=Workbench_Sketcher.svg | ||
+ | |IconL=Sketcher_BSplineIncreaseKnotMultiplicity.svg | ||
+ | |IconR=Sketcher_SwitchVirtualSpace.svg | ||
+ | }} | ||
+ | </div> | ||
− | {{GuiCommand | + | <div class="mw-translate-fuzzy"> |
+ | {{GuiCommand/de | ||
|Name=Sketcher BSplineDecreaseKnotMultiplicity | |Name=Sketcher BSplineDecreaseKnotMultiplicity | ||
− | |Workbenches=[[Sketcher Workbench| | + | |Name/de=Skizzierer BSplineKnotenVielfaltVerringern |
− | |MenuLocation= | + | |Workbenches=[[Sketcher Workbench/de|Skizzierer]] |
+ | |MenuLocation=Skizze → Skizzierer B-spline Werkzeuge → Knotenvielfalt verringern | ||
|Version=0.17 | |Version=0.17 | ||
− | |SeeAlso=[[Sketcher CompCreateBSpline| | + | |SeeAlso=[[Sketcher CompCreateBSpline/de|Erstelle B-spline]] |
}} | }} | ||
+ | </div> | ||
==Beschreibung== | ==Beschreibung== | ||
− | Verringert die Knotenvielfalt eines B-Spline | + | Verringert die Knotenvielfalt eines B-Spline Kurvenknotens (siehe [https://en.wikipedia.org/wiki/B-spline B-Spline]). |
+ | |||
+ | B-splines are basically a combination of [https://en.wikipedia.org/wiki/Bezier_curve#Constructing_B%C3%A9zier_curves Bézier curves] (nicely explained in [https://www.youtube.com/watch?v=bE1MrrqBAl8 this] and [https://www.youtube.com/watch?v=xXJylM2S72s this] video). The points where two Bézier curves are connected to form the spline are called knots. A knot on a degree ''d'' spline with the multiplicity ''m'' means that the curve left and right to the knot has at least an equal ''n'' order derivative (called ''C''<sup>''n''</sup> continuity) whereas n=d-m.<br/> | ||
+ | Here is a spline whose knots have the multiplicity 1 (indicated by the number in parentheses, <br/>indication can be changed using the toolbar button {{Button|[[File:Sketcher_BSplineKnotMultiplicity.svg|24px]] [[Sketcher_BSplineKnotMultiplicity|Show/hide B-spline knot multiplicity]]}}): | ||
+ | |||
+ | [[File:Sketcher_KnotMultiplicity_multiplicity1.png|386px]] | ||
+ | <div class="mw-translate-fuzzy"> | ||
+ | {{Caption|B-spline Kurve zeigt abnehmende Knotenvielfalt.}} | ||
+ | </div> | ||
+ | |||
+ | A multiplicity of 3 will change this spline so that even the first order derivatives are not equal (''C''<sup>0</sup> continuity). Here is the same spline where the left's knot multiplicity was increased to 3: | ||
+ | |||
+ | [[File:Sketcher_KnotMultiplicity_multiplicity3.png|386px]] | ||
+ | {{Caption|B-spline from above with knot multiplicity 3. A control point was moved to show that the knot has ''C''<sup>0</sup> continuity.}} | ||
+ | |||
+ | A consequence of a higher multiplicity is that for the price of loosing continuity you gain local control. This means the change of one control point only affects the spline locally to this changed point. This can be seen in this example, where the spline from the first image above was taken and its second control point from the right side was moved up: | ||
+ | |||
+ | [[File:Sketcher_KnotMultiplicity_locality.png]] | ||
+ | {{Caption|Effect of locality due to different multiplicity.}} | ||
− | + | One can see that the spline with knot multiplicity 1 is completely changed while the one with multiplicity 2 kept its form at its left side. | |
− | |||
− | == | + | '''Note:''' If you decrease the multiplicity, the knot vanishes, because mathematically it appears then zero times in the knot vector, meaning there is no longer a basis function. Understanding this, requires some math, but it will also be clear when you look at the multiplicity: For example degree = 3 then multiplicity = 0 means that at the position of the knot two Bézier pieces are connected with ''C''<sup>3</sup> continuity. So the third derivative should be equal on both sides of the knot. However for a cubic Bézier curve (that is a polynom with degree 3) , this means both sides must be part of the same curve. So there is then actually no longer a knot connecting 2 different Bézier curves, the former knot is then simply a point onto one Bézier curve. |
− | |||
+ | ==Anwendung== | ||
− | {{ | + | <div class="mw-translate-fuzzy"> |
+ | # Wähle einen B-Spline Knoten | ||
+ | # Rufe das Werkzeug mit mehreren Methoden auf: | ||
+ | #* Drücke die {{Button|[[File:Sketcher_BSplineDecreaseKnotMultiplicity.svg|16px]] [[Sketcher_BSplineDecreaseKnotMultiplicity/de|B-spline Knotenvervielfalt Verringern]]}} Schaltfläche. | ||
+ | #* Verwende den {{MenuCommand|Skizze → Skizzierer B-Spline Werkzeuge → [[File:Sketcher_BSplineDecreaseKnotMultiplicity.svg|16px]] Knotenvervielfalt Verringern}} Eintrag im oberen Menü. | ||
+ | </div> | ||
− | + | '''Note:''' Decreasing the multiplicity from 1 to 0 will remove the knot since the result would be a curve with an "edge" at the knot position (''C''<sup>0</sup> continuity) and this is not supported. (To create curves with an "edges", you can create two splines and connect them.) | |
− | {{ | + | <div class="mw-translate-fuzzy"> |
+ | {{Docnav/de | ||
+ | |[[Sketcher_BSplineIncreaseKnotMultiplicity/de|Knotenvielfalt erhöhen]] | ||
+ | |[[Sketcher_SwitchVirtualSpace/de|Virtuellen Raum wechseln]] | ||
+ | |[[Sketcher_Workbench/de|Skizzierer]] | ||
+ | |IconC=Workbench_Sketcher.svg | ||
+ | |IconL=Sketcher_BSplineIncreaseKnotMultiplicity.svg | ||
+ | |IconR=Sketcher_SwitchVirtualSpace.svg | ||
+ | }} | ||
+ | </div> | ||
+ | {{Sketcher Tools navi{{#translation:}}}} | ||
+ | {{Userdocnavi{{#translation:}}}} | ||
{{clear}} | {{clear}} |
Latest revision as of 17:20, 13 December 2020
Menüeintrag |
---|
Skizze → Skizzierer B-spline Werkzeuge → Knotenvielfalt verringern |
Arbeitsbereich |
Skizzierer |
Standardtastenkürzel |
None |
In der Version eingeführt |
0.17 |
Siehe auch |
Erstelle B-spline |
Contents |
Beschreibung
Verringert die Knotenvielfalt eines B-Spline Kurvenknotens (siehe B-Spline).
B-splines are basically a combination of Bézier curves (nicely explained in this and this video). The points where two Bézier curves are connected to form the spline are called knots. A knot on a degree d spline with the multiplicity m means that the curve left and right to the knot has at least an equal n order derivative (called Cn continuity) whereas n=d-m.
Here is a spline whose knots have the multiplicity 1 (indicated by the number in parentheses,
indication can be changed using the toolbar button Show/hide B-spline knot multiplicity):
B-spline Kurve zeigt abnehmende Knotenvielfalt.
A multiplicity of 3 will change this spline so that even the first order derivatives are not equal (C0 continuity). Here is the same spline where the left's knot multiplicity was increased to 3:
B-spline from above with knot multiplicity 3. A control point was moved to show that the knot has C0 continuity.
A consequence of a higher multiplicity is that for the price of loosing continuity you gain local control. This means the change of one control point only affects the spline locally to this changed point. This can be seen in this example, where the spline from the first image above was taken and its second control point from the right side was moved up:
Effect of locality due to different multiplicity.
One can see that the spline with knot multiplicity 1 is completely changed while the one with multiplicity 2 kept its form at its left side.
Note: If you decrease the multiplicity, the knot vanishes, because mathematically it appears then zero times in the knot vector, meaning there is no longer a basis function. Understanding this, requires some math, but it will also be clear when you look at the multiplicity: For example degree = 3 then multiplicity = 0 means that at the position of the knot two Bézier pieces are connected with C3 continuity. So the third derivative should be equal on both sides of the knot. However for a cubic Bézier curve (that is a polynom with degree 3) , this means both sides must be part of the same curve. So there is then actually no longer a knot connecting 2 different Bézier curves, the former knot is then simply a point onto one Bézier curve.
Anwendung
- Wähle einen B-Spline Knoten
- Rufe das Werkzeug mit mehreren Methoden auf:
- Drücke die
B-spline Knotenvervielfalt Verringern Schaltfläche.
- Verwende den Skizze → Skizzierer B-Spline Werkzeuge →
Knotenvervielfalt Verringern Eintrag im oberen Menü.
- Drücke die
Note: Decreasing the multiplicity from 1 to 0 will remove the knot since the result would be a curve with an "edge" at the knot position (C0 continuity) and this is not supported. (To create curves with an "edges", you can create two splines and connect them.)
(FIXME)
- Die Werkzeuge: Skizze erstellen, Skizze bearbeiten, Skizze verlassen, Skizze anzeigen, View section, Skizze einer Fläche zuordnen..., Reorient sketch, Skizze überprüfen, Skizzen zusammenführen, Skizze spiegeln
- Skizzen-Geometrien: Punkt, Linie, Bögen erstellen, Bogen, Kreisbogen durch drei Punkte, Kreise erstellen, Kreis, Kreis durch drei Punkte, Kegelförmige Körper erstellen, Ellipse mit Mittelpunkt, Ellipse durch drei Punkte, Ellipsenbogen, Hyperbel erstellen, Parabel erstellen, B-splines erstellen, B-spline, Create periodic B-spline, Linienzug (Mehrpunktlinie), Rechteck, Reguläres Polygon erstellen, Dreieck, Quadrat, Fünfeck, Sechseck, Siebeneck, Achteck, Create Regular Polygon, Nut, Abrundung erstellen, Kante zuschneiden, Verlängern, Externe Geometrie, CarbonCopy, Konstruktionsmodus
- Skizzenbeschränkungen
- Geometrische Beschränkungen Koinzidenz erzwingen, Punkt auf Objekt festlegen, Vertikal, Horizontal, Parallel, Orthogonal, Tangente, Gleichheit, Symmetrisch, Constrain Block
- Dimensional constraints Sperren, Horizontaler Abstand, Vertikaler Abstand, Distanz festlegen, Radius festlegen, Winkel festlegen, Snell's Law, Interne Ausrichtung einschränken, Umschalten auf steuernde Bemaßung,
- Sketcher tools Select solver DOFs, Close Shape, Connect Edges, Select Constraints, Select Origin, Select Vertical Axis, Select Horizontal Axis, Select Redundant Constraints, Select Conflicting Constraints, Select Elements Associated with constraints, Show/Hide internal geometry, Symmetry, Clone, Copy, Move, Rectangular Array, Delete All Geometry, Delete All Constraints
- Sketcher B-spline tools Show/Hide B-spline degree, Show/Hide B-spline control polygon, Show/Hide B-spline curvature comb, Show/Hide B-spline knot multiplicity, Convert Geometry to B-spline, Increase degree, Increase knot multiplicity, Decrease knot multiplicity
- Sketcher virtual space Switch Virtual Space

- Installation: Installieren auf Windows, Installieren auf Linux, Installieren auf MacOSX; Erste Schritte
- Grundlagen: Über FreeCAD, Arbeitsbereiche, Programmeinstellungen, Dokumentstruktur, Graphische Oberfläche anpassen, Objekteigenschaften, Mausbedienung; Tutorials
- Arbeitsbereiche: Arch, Draft, FEM, Image, Inspection, Mesh, OpenSCAD, Part, PartDesign, Path, Plot, Points, Raytracing, Reverse Engineering, Robot, Ship, Sketcher, Spreadsheet, Start, Surface, TechDraw, Test Framework, Web
- Scripting: Allgemein: Einführung in Python, FreeCAD scripting tutorial, FreeCAD Scripting Basics, Wie installiere ich Makros?, Gui Command, Units Module: Builtin modules, Erstellung von Arbeitsbereichen, Weitere Workbenches installieren Meshes (Netze): Mesh Scripting, Arbeitsbereich Mesh Teile: Arbeitsbereich Part, Topological data scripting, PythonOCC, Mesh to Part Coin scenegraph: The Coin/Inventor scenegraph, Pivy Qt-Interface: PySide, Using the FreeCAD GUI, Dialog creation Parametrische Objekte: Scripted objects Andere: Code-Schnipsel, Linienzeichnungsfunktion, Einbetten von FreeCAD, FreeCAD-Bibliothek für Vektormathematik, Übersicht für erfahrene Anwender, Grundlagen der FreeCAD-Skripterstellung, Topologisches Daten-Scripting