Scripts/fr: Difference between revisions

From FreeCAD Documentation
(Created page with "Rien d'exceptionnel ici aussi, notez cependant l'uniformité dans le codage des méthodes; Cette approche est plus linéaire que celles vues autour d'autres tutoriels sur les...")
(Created page with "Utilisons les géométries, supprimons les lignes sous la section de code commençant par {{incode|# objects definition}} et insérons les lignes suivantes:")
Line 156: Line 156:
Rien d'exceptionnel ici aussi, notez cependant l'uniformité dans le codage des méthodes; Cette approche est plus linéaire que celles vues autour d'autres tutoriels sur les scripts, cette "linéarité" aide grandement à la lisibilité et aussi avec les opérations couper-copier-coller.
Rien d'exceptionnel ici aussi, notez cependant l'uniformité dans le codage des méthodes; Cette approche est plus linéaire que celles vues autour d'autres tutoriels sur les scripts, cette "linéarité" aide grandement à la lisibilité et aussi avec les opérations couper-copier-coller.


Let's use the geometries, delete lines below the code section starting with {{incode|# objects definition}}, and insert the following lines:
Utilisons les géométries, supprimons les lignes sous la section de code commençant par {{incode|# objects definition}} et insérons les lignes suivantes:


{{Code|code=
{{Code|code=

Revision as of 12:11, 17 October 2020

Tutoriel
Thème
Scripting
Niveau
Base
Temps d'exécution estimé
Auteurs
onekk Carlo
Version de FreeCAD
0.19
Fichiers exemples
Voir aussi
None

Introduction

Avec Scripting, nous entendons créer des objets topologiques à l'aide de l'interpréteur Python de FreeCAD. FreeCAD pourrait être utilisé comme un "très bon" remplacement d'OpenSCAD, principalement parce qu'il a un véritable interpréteur Python, ce qui signifie qu'il a un vrai langage de programmation à bord, presque tout ce que vous pouvez faire avec l'interface graphique est faisable avec un script Python.

Malheureusement, les informations sur les scripts dans la documentation, et même dans ce wiki sont éparpillées et manquent d'uniformité "d'écriture" et la plupart d'entre elles sont expliquées d'une manière trop technique.


Vous ouvrir l'appétit

Le premier obstacle d'une manière simple à la création de scripts est qu'il n'y a pas de moyen direct d'accéder à l'éditeur Python interne de FreeCAD via un élément de menu ou une icône dans la zone de la barre d'outils, mais sachant que FreeCAD ouvre un fichier avec un .py dans l'éditeur Python interne, l'astuce la plus simple est de créer dans votre éditeur de texte préféré, puis de l'ouvrir avec la commande habituelle Fichier → Ouvrir.

Pour faire les choses d'une manière polie, le fichier doit être écrit avec un certain ordre, l'éditeur Python FreeCAD a une bonne "Syntaxe HIghlighting" qui manque dans de nombreux éditeurs simples comme le Notepad Windows ou certains éditeurs Linux de base, il suffit donc d'écrire ces quelques lignes:

"""script.py

   Primo script per FreeCAD

"""


Enregistrez-les avec un nom significatif avec l'extension .py et chargez le fichier résultant dans FreeCAD, avec la commande Fichier - Ouvrir.


Un exemple simple de ce qu'il est nécessaire d'avoir dans un script est présenté dans cette partie du code que vous pourriez utiliser comme modèle pour presque tous les futurs scripts:

"""filename.py

   Here a short but significant description of what the script do 

"""


import FreeCAD
from FreeCAD import Base, Vector
import Part
from math import pi, sin, cos

DOC = FreeCAD.activeDocument()
DOC_NAME = "Pippo"

def clear_doc():
    """
    Clear the active document deleting all the objects
    """
    for obj in DOC.Objects:
        DOC.removeObject(obj.Name)

def setview():
    """Rearrange View"""
    FreeCAD.Gui.SendMsgToActiveView("ViewFit")
    FreeCAD.Gui.activeDocument().activeView().viewAxometric()


if DOC is None:
    FreeCAD.newDocument(DOC_NAME)
    FreeCAD.setActiveDocument(DOC_NAME)
    DOC = FreeCAD.activeDocument()

else:

    clear_doc()

# EPS= tolerance to use to cut the parts
EPS = 0.10
EPS_C = EPS * -0.5

Certaines astuces sont incorporées dans le code ci-dessus:


  • import FreeCAD Cette ligne importe FreeCAD dans l'interpréteur FreeCAD Python, cela peut sembler redondant, mais ce n'est pas le cas.
  • from FreeCAD import Base, Vector Base et Vector sont largement utilisés dans l'écriture de scripts FreeCAD, les importer de cette manière vous évitera de les appeler avec FreeCAD.Vector ou FreeCAD.Base au lieu de Base ou Vector, cela économisera de nombreuses frappes et rendra les lignes de code beaucoup plus petites.


Commençons par un petit script qui fait un très petit travail, mais qui montre la puissance de cette approche.

def cubo(nome, lung, larg, alt):
    obj_b = DOC.addObject("Part::Box", nome)
    obj_b.Length = lung
    obj_b.Width = larg
    obj_b.Height = alt

    DOC.recompute()

    return obj_b

# objects definition

obj = cubo("test_cube", 5, 5, 5)

setview()

Mettez ces lignes après le code "modèle" et appuyez sur la flèche verte dans la Barre d'outils Macro

Vous verrez des choses magiques, un nouveau document est ouvert nommé "Pippo" (nom italien pour Toqué) et vous verrez dans la vue 3D un Cube comme ci-dessous.

Test Cube

Quelque chose en plus...

Pas trop étonnant? Oui, mais il faut commencer quelque part, on peut faire la même chose avec un Cylindre, ajouter ces lignes de code après la méthode cubo( et avant la ligne # objects definition.

def base_cyl(nome, ang, rad, alt ):
    obj = DOC.addObject("Part::Cylinder", nome)
    obj.Angle = ang
    obj.Radius = rad
    obj.Height = alt
    
    DOC.recompute()

    return obj

Même ici, rien de trop excitant. Mais veuillez noter quelques particularités:

  • L'absence de la référence habituelle à l 'App., présente dans de nombreux extraits de code de documentation est délibérée. Ce code pourrait être utilisé même en invoquant FreeCAD comme module dans un interpréteur Python externe, la chose n'est pas facilement faisable avec une AppImage, mais avec un certain soin, cela pourrait être fait. De plus, dans la devise standard de Python, "mieux explicite qu'implicite", App. explique de manière très "mal" d'où viennent les choses.
  • Notez l'utilisation du nom "constant" attribué au document actif dans DOC = FreeCAD.activeDocument(). activeDocument n'est pas une "constante" au sens strict, mais d'une manière "sémantique" c'est notre "Document actif", qui pour notre utilisation sera une "constante" appropriée. La convention Python d'utiliser le nom "ALL CAPS" pour "constantes", sans oublier que DOC est beaucoup plus court que FreeCAD.activeDocument().
  • Chaque méthode retourne une géométrie, cela sera clair dans la suite de la page.
  • Une geometrie n'avait pas la propriété Placement, lors de l'utilisation de géométries simples pour créer une géométrie plus complexe, gérer Placement est une chose délicate.

Maintenant, que faire avec ces géométries?

Introduisons les opérations booléennes. Comme exemple pour démmarrer, placez ces lignes après base_cyl(..., cela crée une méthode pour une Fusion également connue sous le nom d'opération Union:

def fuse_obj(nome, obj_0, obj_1):
    obj = DOC.addObject("Part::Fuse", nome)
    obj.Base = obj_0
    obj.Tool = obj_1
    obj.Refine = True
    DOC.recompute()

    return obj

Rien d'exceptionnel ici aussi, notez cependant l'uniformité dans le codage des méthodes; Cette approche est plus linéaire que celles vues autour d'autres tutoriels sur les scripts, cette "linéarité" aide grandement à la lisibilité et aussi avec les opérations couper-copier-coller.

Utilisons les géométries, supprimons les lignes sous la section de code commençant par # objects definition et insérons les lignes suivantes:

# objects definition

obj = cubo("cubo_di_prova", 5, 5, 5)

obj1 = base_cyl('primo cilindro', 360,2,10)

fuse_obj("Fusione", obj, obj1)

setview()

Launch the script with the green arrow and we will see in the 3D view something like:

cube and cylinder

Placement

Placement Concept is relatively complex, see Aeroplane Tutorial for a more deep explanation.

We usually are in need of placing geometries respect each other, when building complex object this is a recurring task, the most common way is to use the geometry Placement property.

FreeCAD offer a wide choice of ways to set this property, one is more tailored to another depending the knowledge and the background of the user, but the more plain writing is explained in the cited Tutorial, it use a peculiar definition of the Rotation portion of Placement, quite easy to learn.

FreeCAD.Placement(Vector(0,0,0), FreeCAD.Rotation(10,20,30), Vector(0,0,0))

But over other consideration, one thing is crucial, geometry reference point, in other word the point from which the object is modeled by FreeCAD, as described in this table, copied from Placement:


Object Reference Point
Part.Box left (minx), front (miny), bottom (minz) vertex
Part.Sphere center of the sphere (ie centre of bounding box)
Part.Cylinder center of the bottom face
Part.Cone center of bottom face (or apex if bottom radius is 0)
Part.Torus center of the torus
Features derived from Sketches the Feature inherits the Position of the underlying Sketch. Sketches always start with Position = (0,0,0). This position corresponds to the origin in the sketch.


This information has to be kept in mind especially when we have to apply a rotation.

Some examples may help, delete all the line after base_cyl method and insert the portion of code below:

def sfera(nome, rad):
    obj = DOC.addObject("Part::Sphere", nome)
    obj.Radius = rad
    
    DOC.recompute()

    return obj   


def mfuse_obj(nome, objs):
    obj = DOC.addObject("Part::MultiFuse", nome)
    obj.Shapes = objs
    obj.Refine = True
    DOC.recompute()

    return obj


def aeroplano():

    lung_fus = 30
    diam_fus = 5
    ap_alare = lung_fus * 1.75
    larg_ali = 7.5
    spess_ali = 1.5   
    alt_imp = diam_fus * 3.0  
    pos_ali = (lung_fus*0.70)
    off_ali = (pos_ali - (larg_ali * 0.5))

    obj1 = base_cyl('primo cilindro', 360, diam_fus, lung_fus)

    obj2 = cubo('ali', ap_alare, spess_ali, larg_ali, True, off_ali)

    obj3 = sfera("naso", diam_fus)
    obj3.Placement = FreeCAD.Placement(Vector(0,0,lung_fus), FreeCAD.Rotation(0,0,0), Vector(0,0,0))

    obj4 = cubo('impennaggio', spess_ali, alt_imp, larg_ali, False, 0)
    obj4.Placement = FreeCAD.Placement(Vector(0,alt_imp * -1,0), FreeCAD.Rotation(0,0,0), Vector(0,0,0))

    objs = (obj1, obj2, obj3, obj4)

    obj = mfuse_obj("Forma esempio", objs)
    obj.Placement = FreeCAD.Placement(Vector(0,0,0), FreeCAD.Rotation(0,0,-90), Vector(0,0,pos_ali))

    DOC.recompute()

    return obj

# objects definition

aeroplano()

setview()

Let's explain something in the code:

  • We have used a method to define a spehere, using the most easy definition, using only the radius.
  • We have introduced a second writing for the 'Union or Fusion, using multiple objects, not more distant from the usual Part::Fuse it uses Part:Multifuse and use only one property Shapes, we have passed a tuple as arguments, but it accepts also a list.
  • We have defined a complex object aeroplano (italian word for aeroplane), but we have done it in a "parametric" way, defining some parameters and deriving other parameters, through some calculation, based on the main parameters.
  • We have used some Placement Placement poperties around in the method and before returning the final geometries we have used a Rotation property with the Yaw-Pitch-Roll, writing. Note the last Vector(0,0, pos_ali), that define a center of rotation of the whole geometry.
aeroplane example
aereo rotated
Prop Placement

It can be easily noted that aeroplano geometry rotate around his "barycenter" or "center of gravity", that I've fixed at wing center, a place that is relatively "natural", but could be placed wherever you want.

The first Vector(0,0,0) is the Translation vector, not used here, but if you substitute aeroplano() with these lines:

obj_f = aeroplano()

print(obj_F.Placement)

You will see in the Report window this text:

Placement [Pos=(0,-21,21), Yaw-Pitch-Roll=(0,0,-90)]

What has happened?

FreeCAD has translated the Vector(0,0,0), FreeCAD.Rotation(0,0,-90), Vector(0,0,pos_ali) in other word our Placement definition that specifies three components, Translation', Rotation and center of rotation in the "internal" values of only two components, Translation and Rotation.

you can easily visualize the value of pos_ali using a print statement in the aeroplano(... method and see that it is:

pos ali =  21.0

in other word the rotation center of the geometry is at Vector(0,0,21), but this rotation center is not shown in the GUI, it could be entered as a Placement value, it could not be easily retrieved.

This is the meaning of the word "awkward" that I've used to define Placement property.