Part Module: Difference between revisions

From FreeCAD Documentation
(Modified place of the added line to not alter the preceding explanation, added a circle example)
(File:Part_ColorFace.svg, for the Part_ColorPerFace command.)
(37 intermediate revisions by 9 users not shown)
Line 9: Line 9:
}}
}}


<!--T:66-->
[[Image:Workbench_Part.svg|thumb|128px|Part workbench icon]]
</translate>
</translate>
{{TOCright}}
[[Image:Workbench_Part.svg|240px|center]]
<translate>
<translate>
<!--T:66-->
{{Caption|align=center|The FreeCAD Part Workbench Icon}}

== Introduction == <!--T:1-->
== Introduction == <!--T:1-->
The solid modelling capabilities of FreeCAD are based on the [http://en.wikipedia.org/wiki/Open_Cascade_Technology Open Cascade Technology] (OCCT) kernel, a professional-grade CAD system that features advanced 3D geometry creation and manipulation. The [[Image:Workbench_Part.svg|24px]] [[Part Workbench|Part Workbench]] is a layer sitting on top of the OCCT libraries, that gives the user access to OCCT geometric primitives and functions. Essentially all 2D and 3D drawing functions in every workbench ([[Image:Workbench_Draft.svg|24px]] [[Draft Workbench|Draft]], [[Image:Workbench_Sketcher.svg|24px]] [[Sketcher Workbench|Sketcher]], [[Image:Workbench_PartDesign.svg|24px]] [[PartDesign Workbench|PartDesign]], etc.), are based on these functions exposed by the Part Workbench. Therefore, the Part Workbench is considered the core component of the modelling capabilities of FreeCAD.
The solid modelling capabilities of FreeCAD are based on the [[OpenCASCADE|OpenCASCADE Technology]] (OCCT) kernel, a professional-grade CAD system that features advanced 3D geometry creation and manipulation. The [[Image:Workbench_Part.svg|24px]] [[Part Workbench|Part Workbench]] is a layer sitting on top of the OCCT libraries, that gives the user access to OCCT geometric primitives and functions. Essentially all 2D and 3D drawing functions in every workbench ([[Image:Workbench_Draft.svg|24px]] [[Draft Workbench|Draft]], [[Image:Workbench_Sketcher.svg|24px]] [[Sketcher Workbench|Sketcher]], [[Image:Workbench_PartDesign.svg|24px]] [[PartDesign Workbench|PartDesign]], etc.), are based on these functions exposed by the Part Workbench. Therefore, the Part Workbench is considered the core component of the modelling capabilities of FreeCAD.


<!--T:35-->
<!--T:35-->
Line 25: Line 24:


</translate>
</translate>
{{TOCright}}
[[Image:Part example.jpg]]

[[Image:Part_Workbench_relationships.svg|600px]]
[[Image:Part_Workbench_relationships.svg|600px]]
<translate>
<translate>


<!--T:55-->
<!--T:55-->
{{Caption|The Part Workbench is the basic layer that exposes the OCCT drawing functions to all workbenches in FreeCAD}}
{{Caption|The Part Workbench is the basic layer that exposes the OCCT drawing functions to all workbenches in FreeCAD.}}


== Tools == <!--T:4-->
== Tools == <!--T:4-->
Line 50: Line 46:
* [[Image:Part_Cone.svg|32px]] [[Part_Cone|Cone]]: Draws a cone by specifying its dimensions
* [[Image:Part_Cone.svg|32px]] [[Part_Cone|Cone]]: Draws a cone by specifying its dimensions
* [[Image:Part_Torus.svg|32px]] [[Part_Torus|Torus]]: Draws a torus (ring) by specifying its dimensions
* [[Image:Part_Torus.svg|32px]] [[Part_Torus|Torus]]: Draws a torus (ring) by specifying its dimensions
* [[File:Part_Tube.svg|32px]] [[Part_Tube|Tube]]: draws a tube by specifying its internal radius and external radius. {{Version|0.19}}
* [[Image:Part_CreatePrimitives.svg|32px]] [[Part_CreatePrimitives|CreatePrimitives]]: A tool to create various parametric geometric primitives
* [[Image:Part_Shapebuilder.svg|32px]] [[Part_Shapebuilder|Shapebuilder]]: A tool to create more complex shapes from various parametric geometric primitives
* [[Image:Part_Primitives.svg|32px]] [[Part_Primitives|Primitives]]: A tool to add any of the defined geometric primitives.
* [[Image:Part_Shapebuilder.svg|32px]] [[Part_Builder|Shapebuilder]]: A tool to create more complex shapes from various parametric geometric primitives


===Modifying objects=== <!--T:38-->
===Modifying objects=== <!--T:38-->
Line 77: Line 74:


<!--T:57-->
<!--T:57-->
* [[Image:Part_ProjectionOnSurface.png|32px]] [[Part_ProjectionOnSurface|Projection on surface]]: Project a logo, text or any face,wire,edge to a surface. With the projection part it is possible to create a solid or wire. {{Version|0.19}}
* [[File:Part_ProjectionOnSurface.svg|32px]] [[Part_ProjectionOnSurface|Projection on surface]]: Project a logo, text or any face,wire,edge to a surface. With the projection part it is possible to create a solid or wire. {{Version|0.19}}


<!--T:47-->
<!--T:47-->
Line 86: Line 83:


<!--T:48-->
<!--T:48-->
* [[Image:Part_Booleans.svg|32px]] [[Part_Booleans|Booleans]]: Performs boolean operations on objects
* [[Image:Part_Booleans.svg|32px]] [[Part_Boolean|Boolean]]: Performs boolean operations on objects
* [[Image:Part_Fuse.svg|32px]] [[Part_Union|Union]]: Fuses (unions) two objects
* [[Image:Part_Fuse.svg|32px]] [[Part_Union|Union]]: Fuses (unions) two objects
* [[Image:Part_Common.svg|32px]] [[Part_Common|Common]]: Extracts the common (intersection) part of two objects
* [[Image:Part_Common.svg|32px]] [[Part_Common|Common]]: Extracts the common (intersection) part of two objects
Line 113: Line 110:


<!--T:59-->
<!--T:59-->
[[File:Std Measure Menu.png|64px]] [[Std Measure Menu|Measure]]: Allows linear and angular measurement between points, edges, and faces.
[[File:Part Measure Menu.png|64px]] [[Part Measure Menu|Measure]]: Allows linear and angular measurement between points, edges, and faces.


<!--T:60-->
<!--T:60-->
Line 132: Line 129:
* [[Image:Part_ShapeFromMesh.svg|32px]] [[Part ShapeFromMesh|Shape from Mesh]]: Creates a shape object from a mesh object.
* [[Image:Part_ShapeFromMesh.svg|32px]] [[Part ShapeFromMesh|Shape from Mesh]]: Creates a shape object from a mesh object.
* [[File:Part_PointsFromMesh.svg|32px]] [[Part PointsFromMesh|Points from mesh]]: creates a shape object made of points from the mesh. {{Version|0.19}}
* [[File:Part_PointsFromMesh.svg|32px]] [[Part PointsFromMesh|Points from mesh]]: creates a shape object made of points from the mesh. {{Version|0.19}}
* [[Part_ConvertToSolid|Convert to solid]]: Converts a shape object to a solid object.
* [[Part_MakeSolid|Convert to solid]]: Converts a shape object to a solid object.
* [[Part_ReverseShapes|Reverse shapes]]: Flips the normals of all faces of the selected object.
* [[File:Part_ReverseShapes.svg|32px]] [[Part_ReverseShapes|Reverse shapes]]: Flips the normals of all faces of the selected object.


<!--T:61-->
<!--T:61-->
Line 144: Line 141:
<!--T:62-->
<!--T:62-->
* [[Image:Part_CheckGeometry.svg|32px]] [[Part CheckGeometry|Check geometry]]: Checks the geometry of selected objects for errors.
* [[Image:Part_CheckGeometry.svg|32px]] [[Part CheckGeometry|Check geometry]]: Checks the geometry of selected objects for errors.

=== Context menu items === <!--T:80-->

<!--T:81-->
*[[Std_SetAppearance|Appearance]]: determines appearance of the whole part (color transparency etc.).
* [[File:Part_ColorFace.svg|32px]] [[Part_FaceColors|Set colors]]: assigns colors to part faces.


== Preferences == <!--T:43-->
== Preferences == <!--T:43-->


<!--T:44-->
<!--T:44-->
<!--The PartDesign preferences are defined in the Part workbench and both the PartDesign workbench and the Part workbench use them-->
* [[Image:Preferences-import-export.svg|32px]] [[Import_Export_Preference|Preference ...]] Import Export
* [[Image:Preferences-part_design.svg|32px]] [[PartDesign_Preferences|Preferences]]: preferences available for Part Tools (the Part workbench also uses the PartDesign Preferences).

* [[Image:Preferences-import-export.svg|32px]] [[Import_Export_Preferences|Import Export Preferences]]: preferences available for importing from and exporting to different file formats.
== OCCT geometric concepts == <!--T:11-->
* [[Fine-tuning]]: some extra parameters to fine-tune Part behavior.

<!--T:12-->
In OpenCascade terminology, we distinguish between geometric primitives and topological shapes. A geometric primitive can be a point, a line, a circle, a plane, etc. or even some more complex types like a B-Spline curve or a surface. A shape can be a vertex, an edge, a wire, a face, a solid or a compound of other shapes. The geometric primitives are not made to be directly displayed on the 3D scene, but rather to be used as building geometry for shapes. For example, an edge can be constructed from a line or from a portion of a circle.

<!--T:13-->
In summary, geometry primitives are "shapeless" building blocks, while [[Part_TopoShape|topological shapes]] are the real objects built on them.

<!--T:14-->
A complete list of all primitives and shapes refer to the [http://www.opencascade.org/org/doc/ OCC documentation] (Alternative: [http://opencascade.sourcearchive.com/documentation/6.3.0.dfsg.1-1/classes.html sourcearchive.com]) and search for '''Geom_*''' (for geometric primitives) and '''TopoDS_*''' (for shapes). There you can also read more about the differences between them. Please note that the official OCC documentation is not available online (you must download an archive) and is mostly aimed at programmers, not at end-users. But hopefully you'll find enough information to get started here.

<!--T:15-->
The geometric types actually can be divided into two major groups: curves and surfaces. Out of the curves (line, circle, ...) you can directly build an edge, out of the surfaces (plane, cylinder, ...) a face can be built. For example, the geometric primitive line is unlimited, i.e. it is defined by a base vector and a direction vector while its shape representation must be something limited by a start and end point. And a box -- a solid -- can be created by six limited planes.

<!--T:16-->
From an edge or face you can also go back to its geometric primitive counterpart.

<!--T:17-->
Thus, out of shapes you can build very complex parts or, the other way round, extract all sub-shapes a more complex shape is made of.

</translate>
[[File:Part_TopoShape_relationships.svg|600px]]
<translate>

<!--T:65-->
{{Caption|The {{incode|Part::TopoShape}} class is the geometrical object that is seen on screen. Essentially all workbenches use these [[Part_TopoShape|TopoShapes]] internally to build and display edges, faces, and solids.}}


== Scripting == <!--T:18-->
== Scripting == <!--T:18-->


<!--T:56-->
<!--T:56-->
{{Emphasis|See also:}} [[Part scripting|Part scripting]]
See [[Part scripting|Part scripting]].


<!--T:19-->
== Tutorials == <!--T:34-->
The main data structure used in the Part module is the [http://en.wikipedia.org/wiki/Boundary_representation BRep] data type from OpenCascade.
Almost all contents and object types of the Part module are available by [[Python|Python]] scripting. This includes geometric primitives, such as Line and Circle (or Arc), and the whole range of TopoShapes, like Vertexes, Edges, Wires, Faces, Solids and Compounds. For each of those objects, several creation methods exist, and for some of them, especially the TopoShapes, advanced operations like boolean union/difference/intersection are also available. Explore the contents of the Part module, as described in the [[FreeCAD Scripting Basics|FreeCAD Scripting Basics]] page, to know more.


<!--T:63-->
<!--T:82-->
The most basic object that can be created is a [[Part Feature|Part Feature]], which has a simple {{PropertyData|Placement}} property, and basic properties to define its color and appearance.

<!--T:64-->
Another simple object used in 2D geometrical objects is [[Part Part2DObject|Part Part2DObject]], which is the base of [[Sketcher_SketchObject|Sketcher SketchObject]] ([[Sketcher Workbench|Sketcher]]), and most [[Draft Workbench|Draft elements]].

=== Test script === <!--T:69-->

<!--T:70-->
Test the creation of [[Part_Primitives|Part Primitives]] with a script. {{Version|0.19}}

</translate>
{{Code|code=
import parttests.part_test_objects as pto
pto.create_test_file("example_file")
}}
<translate>

<!--T:71-->
This script is located in the installation directory of the program, and can be examined to see how the basic primitives are built.
</translate>
{{Code|code=
$INSTALL_DIR/Mod/Part/parttests/part_test_objects.py
}}
<translate>

=== Examples === <!--T:20-->

<!--T:21-->
To create a line element switch to the Python console and type in:

</translate>
{{Code|code=
import Part,PartGui
doc=App.newDocument()
l=Part.LineSegment()
l.StartPoint=(0.0,0.0,0.0)
l.EndPoint=(1.0,1.0,1.0)
doc.addObject("Part::Feature","Line").Shape=l.toShape()
doc.recompute()
}}
<translate>

<!--T:22-->
Let's go through the above python example step by step:

</translate>
{{Code|code=
import Part,PartGui
doc=App.newDocument()
}}
<translate>

<!--T:23-->
loads the Part module and creates a new document

</translate>
{{Code|code=
l=Part.LineSegment()
l.StartPoint=(0.0,0.0,0.0)
l.EndPoint=(1.0,1.0,1.0)
}}
<translate>

<!--T:24-->
Line is actually a line segment, hence the start and endpoint.

</translate>
{{Code|code=
doc.addObject("Part::Feature","Line").Shape=l.toShape()
}}
<translate>

<!--T:25-->
This adds a Part object type to the document and assigns the shape representation of the line segment to the 'Shape' property of the added object. It is important to understand here that we used a geometric primitive (the Part.LineSegment) to create a TopoShape out of it (the toShape() method). Only Shapes can be added to the document. In FreeCAD, geometry primitives are used as "building structures" for Shapes.

</translate>
{{Code|code=
doc.recompute()
}}
<translate>

<!--T:26-->
Updates the document. This also prepares the visual representation of the new part object.

<!--T:27-->
Note that a Line Segment can be created by specifying its start and endpoint directly in the constructor, for example Part.LineSegment(point1,point2), or we can create a default line and set its properties afterwards, as we did here.

A Line can be created also using:

</translate>
{{Code|code=
DOC = DOC = FreeCAD.activeDocument()

def mycreateLine(pt1, pt2, objName):
obj = DOC.addObject("Part::Line", objName)
obj.X1 = pt1[0]
obj.Y1 = pt1[2]
obj.Z1 = pt1[2]

obj.X2 = pt2[0]
obj.Y2 = pt2[1]
obj.Z2 = pt2[2]

DOC.recompute()
return obj

line = mycreateLine((0,0,0), (0,10,0), "LineName")
}}

<translate>


<!--T:28-->
A circle can be created in a similar way:

</translate>
{{Code|code=
import Part
doc = App.activeDocument()
c = Part.Circle()
c.Radius=10.0
f = doc.addObject("Part::Feature", "Circle")
f.Shape = c.toShape()
doc.recompute()
}}
<translate>

or using:

</translate>
{{Code|code=
DOC = DOC = FreeCAD.activeDocument()

def mycreateCircle(rad, objName):
obj = DOC.addObject("Part::Circle", objName)
obj.Radius = rad

DOC.recompute()
return obj

circle = mycreateCircle(5.0, "CircleName")
}}

<translate>

<!--T:29-->
Note again, we used the circle (geometry primitive) to construct a shape out of it. We can of course still access our construction geometry afterwards, by doing:

</translate>
{{Code|code=
s = f.Shape
e = s.Edges[0]
c = e.Curve
}}
<translate>

<!--T:30-->
Here we take the shape of our object f, then we take its list of edges. In this case there will be only one because we made the whole shape out of a single circle, so we take only the first item of the Edges list, and we takes its curve. Every Edge has a Curve, which is the geometry primitive it is based on.

<!--T:31-->
Head to the [[Topological data scripting|Topological data scripting]] page if you would like to know more.

== Tutorials == <!--T:34-->
* [[Import_from_STL_or_OBJ|Import from STL or OBJ]] : How to import STL/OBJ files in FreeCAD
* [[Import_from_STL_or_OBJ|Import from STL or OBJ]] : How to import STL/OBJ files in FreeCAD
* [[Export_to_STL_or_OBJ|Export to STL or OBJ]] : How to export STL/OBJ files from FreeCAD
* [[Export_to_STL_or_OBJ|Export to STL or OBJ]] : How to export STL/OBJ files from FreeCAD
* [[Whiffle_Ball_tutorial|Whiffle Ball tutorial]] : How to use the Part Module
* [[Whiffle_Ball_tutorial|Whiffle Ball tutorial]] : How to use the Part Module



<!--T:32-->
<!--T:32-->
Line 361: Line 176:
|IconR=Workbench_PartDesign.svg
|IconR=Workbench_PartDesign.svg
}}
}}



</translate>
</translate>
{{Part Tools navi{{#translation:}}}}

{{Userdocnavi{{#translation:}}}}
{{Userdocnavi{{#translation:}}}}

{{Part Tools navi{{#translation:}}}}

[[Category:Workbenches{{#translation:}}]]
[[Category:Workbenches{{#translation:}}]]

Revision as of 00:21, 12 October 2020

Part workbench icon

Introduction

The solid modelling capabilities of FreeCAD are based on the OpenCASCADE Technology (OCCT) kernel, a professional-grade CAD system that features advanced 3D geometry creation and manipulation. The Part Workbench is a layer sitting on top of the OCCT libraries, that gives the user access to OCCT geometric primitives and functions. Essentially all 2D and 3D drawing functions in every workbench ( Draft, Sketcher, PartDesign, etc.), are based on these functions exposed by the Part Workbench. Therefore, the Part Workbench is considered the core component of the modelling capabilities of FreeCAD.

The objects created with the Part Workbench are relatively simple; they are intended to be used with boolean operations (unions and cuts) in order to build more complex shapes. This modeling paradigm is known as the constructive solid geometry (CSG) workflow, and it was the traditional methodology used in early CAD systems. On the other hand, the PartDesign Workbench provides a more modern workflow to constructing shapes: it uses a parametrically defined sketch, that is extruded to form a basic solid body, which is then modified by parametric transformations (feature editing), until the final object is obtained.

Part objects are more complex than mesh objects created with the Mesh Workbench, as they permit more advanced operations like coherent boolean operations, modifications history, and parametric behaviour.

The Part Workbench is the basic layer that exposes the OCCT drawing functions to all workbenches in FreeCAD.

Tools

The tools are all located in the Part menu.

Primitives

These are tools for creating primitive objects.

  • Box: Draws a box by specifying its dimensions
  • Cylinder: Draws a cylinder by specifying its dimensions
  • Sphere: Draws a sphere by specifying its dimensions
  • Cone: Draws a cone by specifying its dimensions
  • Torus: Draws a torus (ring) by specifying its dimensions
  • Tube: draws a tube by specifying its internal radius and external radius. introduced in version 0.19
  • Primitives: A tool to add any of the defined geometric primitives.
  • Shapebuilder: A tool to create more complex shapes from various parametric geometric primitives

Modifying objects

These are tools for modifying existing objects. They will allow you to choose which object to modify.

  • Extrude: Extrudes planar faces of an object
  • Revolve: Creates a solid by revolving another object (not solid) around an axis
  • Mirror: Mirrors the selected object on a given mirror plane
  • Fillet: Fillets (rounds) edges of an object
  • Chamfer: Chamfers edges of an object
  • Ruled Surface:
  • Loft: Lofts from one profile to another
  • Sweep: Sweeps one or more profiles along a path
  • Thickness: Hollows out a solid, leaving openings next to select faces.
  • Boolean: Performs boolean operations on objects
  • Union: Fuses (unions) two objects
  • Common: Extracts the common (intersection) part of two objects
  • Cut: Cuts (subtracts) one object from another

Measure

File:Part Measure Menu.png Measure: Allows linear and angular measurement between points, edges, and faces.

Other tools

Context menu items

  • Appearance: determines appearance of the whole part (color transparency etc.).
  • Set colors: assigns colors to part faces.

Preferences

  • Preferences: preferences available for Part Tools (the Part workbench also uses the PartDesign Preferences).
  • Import Export Preferences: preferences available for importing from and exporting to different file formats.
  • Fine-tuning: some extra parameters to fine-tune Part behavior.

Scripting

See Part scripting.

Tutorials