Difference between revisions of "Mesh Scripting/id"

From FreeCAD Documentation
Jump to navigation Jump to search
(Updating to match new version of source page)
(Updating to match new version of source page)
Line 1: Line 1:
 
<languages/>
 
<languages/>
 
{{Docnav
 
{{Docnav
|[[FreeCAD_Scripting_Basics|FreeCAD Scripting Basics]]
 
 
|[[Topological_data_scripting|Topological data scripting]]
 
|[[Topological_data_scripting|Topological data scripting]]
 +
|[[Mesh_to_Part|Mesh to Part]]
 
}}
 
}}
  
Line 9: Line 9:
 
==Introduction==
 
==Introduction==
  
First of all you have to import the Mesh module:
+
To get access to the {{incode|Mesh}} module you have to import it first:
  
 
{{Code|code=
 
{{Code|code=
Line 15: Line 15:
 
}}
 
}}
  
After that you have access to the Mesh module and the Mesh class which facilitate the functions
+
==Creation==
of the FreeCAD C++ Mesh-Kernel.
 
  
==Creation and Loading==
 
 
To create an empty mesh object just use the standard constructor:
 
To create an empty mesh object just use the standard constructor:
  
Line 25: Line 23:
 
}}
 
}}
  
You can also create an object from a file
+
You can also create an object from a file:
  
 
{{Code|code=
 
{{Code|code=
mesh = Mesh.Mesh('D:/temp/Something.stl')
+
mesh = Mesh.Mesh("D:/temp/Something.stl")
 
}}
 
}}
 
(A list of compatible filetypes can be found under 'Meshes' [[Feature_list#Key features|here]].)
 
  
 
Or create it out of a set of triangles described by their corner points:
 
Or create it out of a set of triangles described by their corner points:
  
 
{{Code|code=
 
{{Code|code=
planarMesh = [
+
triangles = [
 
# triangle 1
 
# triangle 1
 
[-0.5000, -0.5000, 0.0000], [0.5000, 0.5000, 0.0000], [-0.5000, 0.5000, 0.0000],
 
[-0.5000, -0.5000, 0.0000], [0.5000, 0.5000, 0.0000], [-0.5000, 0.5000, 0.0000],
Line 42: Line 38:
 
[-0.5000, -0.5000, 0.0000], [0.5000, -0.5000, 0.0000], [0.5000, 0.5000, 0.0000],
 
[-0.5000, -0.5000, 0.0000], [0.5000, -0.5000, 0.0000], [0.5000, 0.5000, 0.0000],
 
]
 
]
planarMeshObject = Mesh.Mesh(planarMesh)
+
meshObject = Mesh.Mesh(triangles)
Mesh.show(planarMeshObject)
+
Mesh.show(meshObject)
 
}}
 
}}
  
The Mesh-Kernel takes care about creating a topologically correct data structure by sorting
+
The Mesh-Kernel takes care of creating a topologically correct data structure by sorting coincident points and edges.
coincident points and edges together.
 
 
 
Later on you will see how you can test and examine mesh data.
 
  
 
[[#top|top]]
 
[[#top|top]]
Line 55: Line 48:
 
==Modeling==
 
==Modeling==
  
To create regular geometries you can use the Python script {{FileName|BuildRegularGeoms.py}}.
+
To create regular geometries you can use one of the {{incode|create*()}} methods. A torus, for instance, can be created as follows:
  
 
{{Code|code=
 
{{Code|code=
import BuildRegularGeoms
+
m = Mesh.createTorus(8.0, 2.0, 50)
 +
Mesh.show(m)
 
}}
 
}}
  
This script provides methods to define simple rotation bodies like spheres, ellipsoids, cylinders, toroids and cones. And it also has a method to create a simple cube.
+
The first two parameters define the radii of the torus and the third parameter is a sub-sampling factor for how many triangles are created. The higher this value the smoother the mesh.
A toroid, for instance, can be created as follows:
 
  
{{Code|code=
+
The {{incode|Mesh}} module also provides three Boolean methods: {{incode|union()}}, {{incode|intersection()}} and {{incode|difference()}}:
t = BuildRegularGeoms.Toroid(8.0, 2.0, 50) # list with several thousands triangles
 
m = Mesh.Mesh(t)
 
}}
 
 
 
The first two parameters define the radii of the toroid and the third parameter is a sub-sampling factor for how many triangles are created. The higher this value the smoother and the lower the coarser the body is.
 
The Mesh class provides a set of boolean functions that can be used for modeling purposes. It provides union, intersection and difference of two mesh objects.
 
  
 
{{Code|code=
 
{{Code|code=
Line 84: Line 71:
 
}}
 
}}
  
Finally, a full example that computes the intersection between a sphere and a cylinder that intersects the sphere.
+
Here is an example that creates a pipe using the {{incode|difference()}} method:
  
 
{{Code|code=
 
{{Code|code=
import Mesh, BuildRegularGeoms
+
import FreeCAD, Mesh
sphere = Mesh.Mesh(BuildRegularGeoms.Sphere(5.0, 50))
+
cylA = Mesh.createCylinder(2.0, 10.0, True, 1.0, 36)
cylinder = Mesh.Mesh(BuildRegularGeoms.Cylinder(2.0, 10.0, True, 1.0, 50))
+
cylB = Mesh.createCylinder(1.0, 12.0, True, 1.0, 36)
diff = sphere
+
cylB.Placement.Base = (FreeCAD.Vector(-1, 0, 0)) # move cylB to avoid co-planar faces
diff = diff.difference(cylinder)
+
pipe = cylA
d = FreeCAD.newDocument()
+
pipe = pipe.difference(cylB)
d.addObject("Mesh::Feature", "Diff_Sphere_Cylinder").Mesh = diff
+
pipe.flipNormals() # somehow required
d.recompute()
+
doc = FreeCAD.ActiveDocument
}}
+
obj = d.addObject("Mesh::Feature", "Pipe")
 
+
obj.Mesh = pipe
[[#top|top]]
+
doc.recompute()
 
 
==Exporting==
 
You can even write the mesh to a python module:
 
 
 
{{Code|code=
 
m.write("D:/Develop/Projekte/FreeCAD/FreeCAD_0.7/Mod/Mesh/SavedMesh.py")
 
import SavedMesh
 
m2 = Mesh.Mesh(SavedMesh.faces)
 
 
}}
 
}}
  
Line 112: Line 91:
 
==Notes==
 
==Notes==
  
An extensive (though hard to use) source of Mesh related scripting are the unit test scripts of the Mesh-Module.  
+
An extensive, though hard to use, source of mesh related scripting are the unit test scripts of the {{incode|Mesh}} module.  
In this unit tests literally all methods are called and all properties/attributes are tweaked.
+
In these unit tests literally all methods are called and all properties/attributes are tweaked.
 
So if you are bold enough, take a look at the [https://github.com/FreeCAD/FreeCAD/blob/master/src/Mod/Mesh/App/MeshTestsApp.py Unit Test module].
 
So if you are bold enough, take a look at the [https://github.com/FreeCAD/FreeCAD/blob/master/src/Mod/Mesh/App/MeshTestsApp.py Unit Test module].
  
See also [[Mesh_API|Mesh API]]
+
See also: [[Mesh_API|Mesh API]].
  
 
[[#top|top]]
 
[[#top|top]]
  
 
{{Docnav
 
{{Docnav
|[[FreeCAD_Scripting_Basics|FreeCAD Scripting Basics]]
 
 
|[[Topological_data_scripting|Topological data scripting]]
 
|[[Topological_data_scripting|Topological data scripting]]
 +
|[[Mesh_to_Part|Mesh to Part]]
 
}}
 
}}
  
{{Mesh Tools navi{{#translation:}}}}
 
 
{{Powerdocnavi{{#translation:}}}}
 
{{Powerdocnavi{{#translation:}}}}
 +
[[Category:Developer Documentation{{#translation:}}]]
 
[[Category:Python Code{{#translation:}}]]
 
[[Category:Python Code{{#translation:}}]]
 +
{{Mesh Tools navi{{#translation:}}}}
 
{{clear}}
 
{{clear}}

Revision as of 22:00, 5 June 2020

Other languages:
Bahasa Indonesia • ‎Deutsch • ‎English • ‎Türkçe • ‎español • ‎français • ‎italiano • ‎polski • ‎română • ‎svenska • ‎čeština • ‎русский • ‎中文(中国大陆)‎

Introduction

To get access to the Mesh module you have to import it first:

import Mesh

Creation

To create an empty mesh object just use the standard constructor:

mesh = Mesh.Mesh()

You can also create an object from a file:

mesh = Mesh.Mesh("D:/temp/Something.stl")

Or create it out of a set of triangles described by their corner points:

triangles = [
# triangle 1
[-0.5000, -0.5000, 0.0000], [0.5000, 0.5000, 0.0000], [-0.5000, 0.5000, 0.0000],
#triangle 2
[-0.5000, -0.5000, 0.0000], [0.5000, -0.5000, 0.0000], [0.5000, 0.5000, 0.0000],
]
meshObject = Mesh.Mesh(triangles)
Mesh.show(meshObject)

The Mesh-Kernel takes care of creating a topologically correct data structure by sorting coincident points and edges.

top

Modeling

To create regular geometries you can use one of the create*() methods. A torus, for instance, can be created as follows:

m = Mesh.createTorus(8.0, 2.0, 50)
Mesh.show(m)

The first two parameters define the radii of the torus and the third parameter is a sub-sampling factor for how many triangles are created. The higher this value the smoother the mesh.

The Mesh module also provides three Boolean methods: union(), intersection() and difference():

m1, m2              # are the input mesh objects
m3 = Mesh.Mesh(m1)  # create a copy of m1
m3.unite(m2)        # union of m1 and m2, the result is stored in m3
m4 = Mesh.Mesh(m1)
m4.intersect(m2)    # intersection of m1 and m2
m5 = Mesh.Mesh(m1)
m5.difference(m2)   # the difference of m1 and m2
m6 = Mesh.Mesh(m2)
m6.difference(m1)   # the difference of m2 and m1, usually the result is different to m5

Here is an example that creates a pipe using the difference() method:

import FreeCAD, Mesh
cylA = Mesh.createCylinder(2.0, 10.0, True, 1.0, 36)
cylB = Mesh.createCylinder(1.0, 12.0, True, 1.0, 36)
cylB.Placement.Base = (FreeCAD.Vector(-1, 0, 0)) # move cylB to avoid co-planar faces
pipe = cylA
pipe = pipe.difference(cylB)
pipe.flipNormals() # somehow required
doc = FreeCAD.ActiveDocument
obj = d.addObject("Mesh::Feature", "Pipe")
obj.Mesh = pipe
doc.recompute()

top

Notes

An extensive, though hard to use, source of mesh related scripting are the unit test scripts of the Mesh module. In these unit tests literally all methods are called and all properties/attributes are tweaked. So if you are bold enough, take a look at the Unit Test module.

See also: Mesh API.

top