Mesh Scripting: Difference between revisions

From FreeCAD Documentation
mNo edit summary
mNo edit summary
(19 intermediate revisions by 2 users not shown)
Line 3: Line 3:
<!--T:21-->
<!--T:21-->
{{Docnav
{{Docnav
|[[FreeCAD_Scripting_Basics|FreeCAD Scripting Basics]]
|[[Topological_data_scripting|Topological data scripting]]
|[[Topological_data_scripting|Topological data scripting]]
|[[Mesh_to_Part|Mesh to Part]]
}}
}}


Line 14: Line 14:


<!--T:25-->
<!--T:25-->
First of all you have to import the Mesh module:
To get access to the {{incode|Mesh}} module you have to import it first:


</translate>
</translate>
Line 22: Line 22:
<translate>
<translate>


<!--T:2-->
==Creation== <!--T:3-->
After that you have access to the Mesh module and the Mesh class which facilitate the functions
of the FreeCAD C++ Mesh-Kernel.


==Creation and Loading== <!--T:3-->
To create an empty mesh object just use the standard constructor:
To create an empty mesh object just use the standard constructor:


Line 36: Line 33:


<!--T:4-->
<!--T:4-->
You can also create an object from a file
You can also create an object from a file:


</translate>
</translate>
{{Code|code=
{{Code|code=
mesh = Mesh.Mesh('D:/temp/Something.stl')
mesh = Mesh.Mesh("D:/temp/Something.stl")
}}
}}
<translate>
<translate>

<!--T:5-->
(A list of compatible filetypes can be found under 'Meshes' [[Feature_list#Key features|here]].)


<!--T:6-->
<!--T:6-->
Line 52: Line 46:
</translate>
</translate>
{{Code|code=
{{Code|code=
planarMesh = [
triangles = [
# triangle 1
# triangle 1
[-0.5000,-0.5000,0.0000],[0.5000,0.5000,0.0000],[-0.5000,0.5000,0.0000],
[-0.5000, -0.5000, 0.0000], [0.5000, 0.5000, 0.0000], [-0.5000, 0.5000, 0.0000],
#triangle 2
#triangle 2
[-0.5000,-0.5000,0.0000],[0.5000,-0.5000,0.0000],[0.5000,0.5000,0.0000],
[-0.5000, -0.5000, 0.0000], [0.5000, -0.5000, 0.0000], [0.5000, 0.5000, 0.0000],
]
]
planarMeshObject = Mesh.Mesh(planarMesh)
meshObject = Mesh.Mesh(triangles)
Mesh.show(planarMeshObject)
Mesh.show(meshObject)
}}
}}
<translate>
<translate>


<!--T:7-->
<!--T:7-->
The Mesh-Kernel takes care about creating a topologically correct data structure by sorting
The Mesh-Kernel takes care of creating a topologically correct data structure by sorting coincident points and edges.
coincident points and edges together.


<!--T:8-->
<!--T:28-->
[[#top|top]]
Later on you will see how you can test and examine mesh data.


==Modeling== <!--T:9-->
==Modeling== <!--T:9-->


<!--T:26-->
<!--T:26-->
To create regular geometries you can use the Python script {{FileName|BuildRegularGeoms.py}}.
To create regular geometries you can use one of the {{incode|create*()}} methods. A torus, for instance, can be created as follows:


</translate>
</translate>
{{Code|code=
{{Code|code=
m = Mesh.createTorus(8.0, 2.0, 50)
import BuildRegularGeoms
Mesh.show(m)
}}
}}
<translate>
<translate>


<!--T:10-->
<!--T:11-->
The first two parameters define the radii of the torus and the third parameter is a sub-sampling factor for how many triangles are created. The higher this value the smoother the mesh.
This script provides methods to define simple rotation bodies like spheres, ellipsoids, cylinders, toroids and cones. And it also has a method to create a simple cube.
A toroid, for instance, can be created as follows:


The {{incode|Mesh}} module also provides three Boolean methods: {{incode|union()}}, {{incode|intersection()}} and {{incode|difference()}}:
</translate>
{{Code|code=
t = BuildRegularGeoms.Toroid(8.0, 2.0, 50) # list with several thousands triangles
m = Mesh.Mesh(t)
}}
<translate>

<!--T:11-->
The first two parameters define the radii of the toroid and the third parameter is a sub-sampling factor for how many triangles are created. The higher this value the smoother and the lower the coarser the body is.
The Mesh class provides a set of boolean functions that can be used for modeling purposes. It provides union, intersection and difference of two mesh objects.


</translate>
</translate>
Line 111: Line 95:


<!--T:12-->
<!--T:12-->
Here is an example that creates a pipe using the {{incode|difference()}} method:
Finally, a full example that computes the intersection between a sphere and a cylinder that intersects the sphere.


</translate>
</translate>
{{Code|code=
{{Code|code=
import Mesh, BuildRegularGeoms
import FreeCAD, Mesh
sphere = Mesh.Mesh( BuildRegularGeoms.Sphere(5.0, 50) )
cylA = Mesh.createCylinder(2.0, 10.0, True, 1.0, 36)
cylinder = Mesh.Mesh( BuildRegularGeoms.Cylinder(2.0, 10.0, True, 1.0, 50) )
cylB = Mesh.createCylinder(1.0, 12.0, True, 1.0, 36)
cylB.Placement.Base = (FreeCAD.Vector(-1, 0, 0)) # move cylB to avoid co-planar faces
diff = sphere
pipe = cylA
diff = diff.difference(cylinder)
pipe = pipe.difference(cylB)
d = FreeCAD.newDocument()
pipe.flipNormals() # somehow required
d.addObject("Mesh::Feature","Diff_Sphere_Cylinder").Mesh=diff
doc = FreeCAD.ActiveDocument
d.recompute()
obj = d.addObject("Mesh::Feature", "Pipe")
obj.Mesh = pipe
doc.recompute()
}}
}}
<translate>
<translate>


==Exporting== <!--T:15-->
<!--T:29-->
[[#top|top]]
You can even write the mesh to a python module:


==Notes== <!--T:17-->
</translate>
{{Code|code=
m.write("D:/Develop/Projekte/FreeCAD/FreeCAD_0.7/Mod/Mesh/SavedMesh.py")
import SavedMesh
m2 = Mesh.Mesh(SavedMesh.faces)
}}
<translate>

==Odds and Ends== <!--T:17-->


<!--T:27-->
<!--T:27-->
An extensive (though hard to use) source of Mesh related scripting are the unit test scripts of the Mesh-Module.
An extensive, though hard to use, source of mesh related scripting are the unit test scripts of the {{incode|Mesh}} module.
In this unit tests literally all methods are called and all properties/attributes are tweaked.
In these unit tests literally all methods are called and all properties/attributes are tweaked.
So if you are bold enough, take a look at the [https://github.com/FreeCAD/FreeCAD/blob/master/src/Mod/Mesh/App/MeshTestsApp.py Unit Test module].
So if you are bold enough, take a look at the [https://github.com/FreeCAD/FreeCAD/blob/master/src/Mod/Mesh/App/MeshTestsApp.py Unit Test module].


<!--T:20-->
<!--T:20-->
See also [[Mesh_API|Mesh API]]
See also: [[Mesh_API|Mesh API]].

<!--T:31-->
[[#top|top]]


<!--T:18-->
<!--T:18-->
{{Docnav
{{Docnav
|[[FreeCAD_Scripting_Basics|FreeCAD Scripting Basics]]
|[[Topological_data_scripting|Topological data scripting]]
|[[Topological_data_scripting|Topological data scripting]]
|[[Mesh_to_Part|Mesh to Part]]
}}
}}


</translate>
</translate>
{{Mesh Tools navi{{#translation:}}}}
{{Powerdocnavi{{#translation:}}}}
{{Powerdocnavi{{#translation:}}}}
[[Category:Developer Documentation{{#translation:}}]]
[[Category:Python Code{{#translation:}}]]
[[Category:Python Code{{#translation:}}]]
{{Mesh Tools navi{{#translation:}}}}
{{clear}}
{{clear}}

Revision as of 12:24, 3 June 2020

Introduction

To get access to the Mesh module you have to import it first:

import Mesh

Creation

To create an empty mesh object just use the standard constructor:

mesh = Mesh.Mesh()

You can also create an object from a file:

mesh = Mesh.Mesh("D:/temp/Something.stl")

Or create it out of a set of triangles described by their corner points:

triangles = [
# triangle 1
[-0.5000, -0.5000, 0.0000], [0.5000, 0.5000, 0.0000], [-0.5000, 0.5000, 0.0000],
#triangle 2
[-0.5000, -0.5000, 0.0000], [0.5000, -0.5000, 0.0000], [0.5000, 0.5000, 0.0000],
]
meshObject = Mesh.Mesh(triangles)
Mesh.show(meshObject)

The Mesh-Kernel takes care of creating a topologically correct data structure by sorting coincident points and edges.

top

Modeling

To create regular geometries you can use one of the create*() methods. A torus, for instance, can be created as follows:

m = Mesh.createTorus(8.0, 2.0, 50)
Mesh.show(m)

The first two parameters define the radii of the torus and the third parameter is a sub-sampling factor for how many triangles are created. The higher this value the smoother the mesh.

The Mesh module also provides three Boolean methods: union(), intersection() and difference():

m1, m2              # are the input mesh objects
m3 = Mesh.Mesh(m1)  # create a copy of m1
m3.unite(m2)        # union of m1 and m2, the result is stored in m3
m4 = Mesh.Mesh(m1)
m4.intersect(m2)    # intersection of m1 and m2
m5 = Mesh.Mesh(m1)
m5.difference(m2)   # the difference of m1 and m2
m6 = Mesh.Mesh(m2)
m6.difference(m1)   # the difference of m2 and m1, usually the result is different to m5

Here is an example that creates a pipe using the difference() method:

import FreeCAD, Mesh
cylA = Mesh.createCylinder(2.0, 10.0, True, 1.0, 36)
cylB = Mesh.createCylinder(1.0, 12.0, True, 1.0, 36)
cylB.Placement.Base = (FreeCAD.Vector(-1, 0, 0)) # move cylB to avoid co-planar faces
pipe = cylA
pipe = pipe.difference(cylB)
pipe.flipNormals() # somehow required
doc = FreeCAD.ActiveDocument
obj = d.addObject("Mesh::Feature", "Pipe")
obj.Mesh = pipe
doc.recompute()

top

Notes

An extensive, though hard to use, source of mesh related scripting are the unit test scripts of the Mesh module. In these unit tests literally all methods are called and all properties/attributes are tweaked. So if you are bold enough, take a look at the Unit Test module.

See also: Mesh API.

top