Compile on Windows

From FreeCAD Documentation
Revision as of 16:20, 22 May 2022 by Uwestoehr (talk | contribs) (final)

This page explains step by step how to compile FreeCAD 0.19 or newer on Windows using Microsoft's MSVC compiler. For information on using MSYS2/MinGW see Compile on MinGW. For other platforms see Compiling.

Prerequisites

Compiling FreeCAD on Windows requires several tools and libraries.

Required

  • A compiler. FreeCAD is tested with Visual Studio (MSVC)—other compilers may work, but instructions for use are not included here. More details in #Compiler, below.
  • Git (There are also GUI frontends available for Git, see the next section.)
  • CMake version 3.11.x or newer.
    Hint: Choosing the option Add CMake to the system PATH for all users when installing CMake will make CMake accessible from the Windows command prompt, which can be useful.
  • LibPack (also called FreeCADLibs). This is a single package containing all of the libraries necessary to compile FreeCAD on Windows. Download the version of the LibPack that corresponds to the version of FreeCAD you want to compile. To compile FreeCAD 0.19 or the latest development version 0.20, download the LibPack for 0.19/0.20 (64-bit only). Extract the LibPack to a convenient location. (If your computer does not recognize the .7z extension, you should install the program 7-zip.)
    Note: It is highly recommended to compile FreeCAD with the compiler version the LibPack is designed for. For example, you might run into problems compiling FreeCAD 0.19 using MSVC 15 because the LibPack for 0.19 is designed to be built with MSVC 17.

Optional programs

  • A GUI frontend for Git. There are several frontends available, see this list. The main benefit of a frontend is that you don't have to learn the Git commands to get the source code of FreeCAD or to send patches to the GitHub repository of FreeCAD.

In the following we describe source code handling using the TortoiseGit frontend. This frontend integrates directly into Windows file explorer and has a large user community to get help in case you have problems.

  • NSIS is used to generate the FreeCAD Windows installer.

Source code

Now you can get the source code of FreeCAD:

Using a frontend

When using the Git frontend TortoiseGit:

  1. Create a new folder where the source code will be downloaded.
  2. Right-click on this folder in the Windows file explorer and select Git Clone in the context menu.
  3. A dialog will appear. In it, enter the URL for the FreeCAD Git repository

https://github.com/FreeCAD/FreeCAD.git

and click OK.

The latest source code will be downloaded from the FreeCAD Git repository and the folder will be tracked by Git.

Using the command line

To create a local tracking branch and download the source code, open a terminal (command prompt) and switch there to the directory you want the source, then type:

git clone https://github.com/FreeCAD/FreeCAD.git

Compiler

The default (recommended) compiler is MS Visual Studio (MSVC). Though it may be possible to use other compilers, for example gcc via Cygwin or MinGW, it is not tested or covered here.

You can get a free version of MSVC (for individual usage) by downloading the Community edition of MS Visual Studio.

For those who want to avoid installing the huge MSVC for the mere purpose of having a compiler, see CompileOnWindows - Reducing Disk Footprint.

Note: Although the Community edition of MSVC is free, to use the IDE for more than a 30-day trial period you must create a Microsoft account. If you will only compile using the command line, you don't need the IDE and thus no Microsoft account.

As a free and OpenSource alternative IDE you can use KDevelop. You can use KDevelop to modify and write C++ code but must use the command line to compile.

Optional system path configuration

Optionally you can include the paths to some folders to the system PATH variable. This is helpful if you want to access programs in these folders from the command line/powershell or if you want special programs to be found by the compiler or CMake. Besides this, adding folders to the PATH might be necessary if you did not use the corresponding options when installing the program.

  • You can include the folder of your LibPack in your system PATH variable. This is useful if you plan to build multiple configurations/versions of FreeCAD.
  • If you did not use the option to add CMake to the PATH while installing it, add its installation folder

C:\Program Files\CMake\bin to the PATH.

  • If you did not use the option to add TortoiseGit to the PATH while installing it, add its installation folder

C:\Program Files\TortoiseGit\bin to the PATH.

To add folder paths to the PATH variable:

  1. In the Windows Start menu Right click on Computer and choose Properties.
  2. In the appearing dialog click on Advanced system settings.
  3. Another dialog will open. Click there in the tab Advanced on Environment Variables.
  4. Again another dialog will open. Select then the variable Path and click on Edit.
  5. And again another dialog will open. Click there on New and add to path to the folder of Git or the LibPack.
  6. Finally press OK and close all dialogs by pressing OK as well.

Configuration

Once you have all of the necessary tools, libraries, and FreeCAD source code, you are ready to begin the configuration and compilation process. This process will proceed in five steps:

  1. Run CMake once to examine your system and begin the configuration progress (this will report that it failed).
  2. Adjust necessary CMake settings to set the locations of the LibPack and enable Qt5.
  3. Re-run CMake to finalize the configuration (this time it should succeed).
  4. Use CMake to generate the Visual Studio build system.
  5. Use Visual Studio to build FreeCAD.

CMake

First, configure the build environment using CMake:

  1. Open the CMake GUI
  2. Specify the source folder of FreeCAD.
  3. Specify a build folder (do not use the source folder -- CMake will create this folder if it does not exist).
  4. Click Configure.
  5. In the dialog that appears specify the generator you want to use: in most cases you will use the defaults in this dialog. For the standard MS Visual Studio use Visual Studio xx 2yyy where xx is the compiler version and 2yyy the year of its release. It is recommended to use the default option Use default native compilers.

Note: It is important to specify the correct bit variant. If you have the 64-bit variant of the LibPack you must also use the x64 compiler.

This will begin the configuration and will fail because of missing settings. This is normal, you have not yet specified the location of the LibPack. However, there are other failures that might occur that require some further action on your part.

If it fails with the message that Visual Studio could not be found, the CMake support in MSVC is not yet installed. To do this:

  1. Open the MSVC IDE
  2. Use the menu Tools → Get Tools and Features
  3. In the Workloads tab enable Desktop development with C++
  4. On the right side you should now see that the component Visual C++ tools for CMake will be installed.
  5. Install it.

If it fails with a message about the wrong Python version or missing Python, then:

  1. Use the "Search:" box in CMake to search for the string "Python"
  2. If you see there a path like C:/Program Files/Python38/python.exe, CMake recognized the Python that is already installed on your PC, but that version is not compatible with the LibPack. Since the LibPack includes a compatible version of Python, modify the following Python settings in CMake to its paths (assuming the LibPack is in the folder D:\FreeCAD-build\FreeCADLibs_12.5.2_x64_VC17):

If there is no error about Visual Studio or Python, everything is fine, but CMake does not yet know all necessary settings. Therefore now:

  1. Search in CMake for the variable FREECAD_LIBPACK_DIR and specify the location of the LibPack folder you downloaded earlier.
  2. Only if building FreeCAD 0.19, search for the variable BUILD_QT5 and enable this option.
  3. Click Configure again.

There should now be no errors. If you continue to encounter errors that you cannot diagnose, visit the Install/Compile forum on the FreeCAD forum website. If CMake proceeded correctly, click on Generate. After this is done you can close CMake and start the compilation of FreeCAD using Visual Studio. However, for the first compilation keep it open in case you want or need to change some options for the build process.

Note: When compiling FreeCAD 0.19, the CMake variable BUILD_ENABLE_CXX_STD will be set to C++14 while for FreeCAD 0.20 it will be set to C++17. This is because FreeCAD 0.20 requires at least the C++ language standard version 17. So when you compiled the last time FreeCAD 0.19 it is necessary to re-run CMake for FreeCAD 0.20 to change the C++ language standard.

Options for the build process

The CMake build system gives you control over some aspects of the build process. In particular, you can switch on and off some features or modules using CMake variables.

Here is a description of some of these variables:

Variable name Description Default
BUILD_XXX Build FreeCAD with the component XXX. If you don't want/need to compile e.g. the workbench OpenSCAD, disable the variable BUILD_OPENSCAD. FreeCAD will then not have this workbench.

Note: Some components are required for other components. If you for example uncheck BUILD_ROBOT CMake will inform you that then the component Path cannot be compiled correctly. Therefore check the CMake output after you changed a BUILD_XXX option!

depends
BUILD_ENABLE_CXX_STD The version of the C++ language standard. C++14 is the highest possible for FreeCAD 0.19 while at least C++17 is required for FreeCAC 0.20. See also the note in section Building with Visual Studio 15 (2017) and 16 (2019) depends
BUILD_FLAT_MESH Necessary to have a build that includes the CreateFlatMesh feature OFF
CMAKE_INSTALL_PREFIX The output folder when building the target INSTALL, see also section Running and installing FreeCAD Windows default program installation folder
FREECAD_COPY_DEPEND_DIRS_TO_BUILD Copies depending libraries needed to execute the FreeCAD.exe to the build folder. See also section Running and installing FreeCAD.
Note: the options FREECAD_COPY_XXX only appear if the libraries were not already copied. So when you change to another LibPack version, it is important to delete all folders in your build folder, except of the LibPack folder. In CMake delete the cache and start as if you compile for the first time and you will get the FREECAD_COPY_XXX options.
OFF
FREECAD_COPY_LIBPACK_BIN_TO_BUILD Copies the LibPack binaries needed to execute the FreeCAD.exe to the build folder. See also section Running and installing FreeCAD. OFF
FREECAD_COPY_PLUGINS_BIN_TO_BUILD Copies Qt's plugin files needed to execute the FreeCAD.exe to the build folder. See also section Running and installing FreeCAD. OFF
FREECAD_LIBPACK_USE Switch the usage of the FreeCAD LibPack on or off ON
FREECAD_LIBPACK_DIR Directory where the LibPack is FreeCAD's source code folder
FREECAD_RELEASE_PDB Create debug libraries also for release builds ON
FREECAD_USE_MP_COMPILE_FLAG Adds the /MP (multiprocessor) option to the Visual Studio projects, enabling speedups on multi-core CPUs. This can greatly accelerate builds on modern processors.
Note: If you turn off FREECAD_USE_PCH, the compilation can quickly overload your heap space, even if you have 16 GB RAM.
ON
FREECAD_USE_PCH Precompiles the headers in order to save compilation time. ON
FREECAD_USE_PYBIND11 Includes the PyBind11 library. Necessary to have a build that includes the CreateFlatMesh feature.
Note: after turning it on you might get a configuration error. Just configure again and the problem should go away.
OFF

Building FreeCAD

Depending on your compiler, the process for building FreeCAD will be slightly different. In the following sections you known workflows are described. If you are building with Qt Creator, jump to Building with Qt Creator, otherwise proceed directly:

Building with Visual Studio 15 (2017), 16 (2019), and 17 (2022)

Release Build

  1. Start the Visual Studio IDE. This can either be done by pressing the button Open Project in the CMake GUI or by double-clicking on the file FreeCAD.sln that you find in your build folder.
  2. In the toolbar of the MSVC IDE assure that you use for the first compilation Release.
  3. There is a window called Solution Explorer. It lists all possible compilation targets. To start a full compilation, right-click on the target ALL_BUILD and then choose Build.

This will now take quite a long time.

To compile a ready-to use FreeCAD, compile the target INSTALL, see section Running and installing FreeCAD.

If you don't get any errors you are done. Congratulations! You can exit MSVC or keep it open.

Note: FreeCAD 0.20 requires at least the C++ language standard version 17 but the 3rd-party component flann from the LibPack is not yet ready for this. Therefore you will get compilation errors for the target ReverseEngineering. To fix this, right-click on this target in the MSVC solution explorer and select in the context menu the last entry Properties. In the appearing dialog change the C++ Language Standard to ISO C++14. Finally build the target ALL_BUILD again.

Debug Build

For a debug build it is necessary that the Python is used that is included in the LibPack. To assure this:

  1. Search in the CMake GUI for "Python"
  2. If you see there a path like C:/Program Files/Python38/python.exe, CMake recognized the Python that is installed on your PC and not the one of the LibPack. In this case adapt these different Python settings in CMake to this (assuming the LibPack is in the folder D:\FreeCAD-build\FreeCADLibs_12.5.2_x64_VC17):

Now

  1. Start the Visual Studio IDE. This can either be done by pressing the button Open Project in the CMake GUI or by double-clicking on the file FreeCAD.sln that you find in your build folder.
  2. In the toolbar of the MSVC IDE assure that you use for the first compilation Debug.
  3. There is a window called Solution Explorer. It lists all possible compilation targets. To start a full compilation, right-click on the target ALL_BUILD and then choose Build in the context menu.

This will now take quite a long time. If there were no compilation errors, you can start the debug build:

  1. Right-click on the target FreeCADMain and then choose Set as Startup Project in the context menu.
  2. Finally click in the toolbar on the button with the green triangle named Local Windows Debugger.

This will start the debug build of FreeCAD and you can use the MSVC IDE to debug it.

Video Resource

An English language tutorial that begins with configuration in CMake Gui and continues to the `Build` command in Visual Studio 16 2019 is available unlisted on YouTube at Tutorial: Build FreeCAD from source on Windows 10.

Building with Qt Creator (outdated)

Installation and configuration of Qt Creator

  • Download and install Qt Creator
  • Tools → Options → Text Editor → Behavior tab:
    • File Encodings → Default Encodings:
    • Set to: ISO-8859-1 /...csISOLatin1 (Certain characters create errors/warnings with Qt Creator if left set to UTF-8. This seems to fix it.)
  • Tools → Options → Build & Run:
    • CMake tab
      • Fill Executable box with path to cmake.exe
    • Kits tab
      • Name: MSVC 2008
      • Compiler: Microsoft Visual C++ Compiler 9.0 (x86)
      • Debugger: Auto detected...
      • Qt version: None
    • General tab
      • Uncheck: Always build project before deploying it
      • Uncheck: Always deploy project before running it

Import project and building

  • File → Open File or Project
  • Open CMakeLists.txt which is in the top level of the source
  • This will start CMake
  • Choose build directory and click next
  • Set generator to NMake Generator (MSVC 2008)
  • Click Run CMake. Follow the instructions depicted above to configure CMake to your liking.

Now FreeCAD can be built

  • Build → Build All
  • This will take a long time...

Once complete, it can be run: There are 2 green triangles at the bottom left. One is debug. The other is run. Pick whichever you want.

Command line build

The steps how to compile from the command line depends on the compiler. For MSVC 2017 the steps are:

  1. In Windows start menu go to Visual Studio 2017 → Visual Studio Tools and choose Developer Command Prompt for VS 2017
  2. Change to your build folder.
  3. Execute the command
msbuild ALL_BUILD.vcxproj /p:Configuration=Release

or

msbuild INSTALL.vcxproj /p:Configuration=Release

These steps can also be automaized. Here is for example a solution for MSVC 2017:

  1. Download the script compile-FC.txt.
  2. Rename it to compile-FC.bat
  3. In Windows file explorer Shift+Right-click on your build folder and use from the context menu Command prompt here.
  4. Execute the command
compile-FC install

Instead of calling compile-FC with the option install you can also use debug or release:

debug   - compile FreeCAD in debug configuration

release - compile FreeCAD in release configuration

install    - compile FreeCAD in release configuration and create an install setup

Running and installing FreeCAD

There are 2 methods to run the compiled FreeCAD:

Method 1: You execute the FreeCAD.exe that you find in your build folder in the subfolder bin

Method 2: You build the target INSTALL

Method 2 is the simpler one because it automatically assures that all libraries needed to run the FreeCAD.exe are in the correct folder. The FreeCAD.exe and the libraries will be output in the folder you specified in the CMake variable CMAKE_INSTALL_PREFIX.

For Method 1 you need to put the libraries into the bin folder of your build folder (where the FreeCAD.exe is). This can easily be done:

  1. Open the CMake GUI.
  2. Search there for the variable option FREECAD_COPY_DEPEND_DIRS_TO_BUILD and check it. If there is no such option, the libraries were already copied, see the description of the options.
  3. Search there for the variable option FREECAD_COPY_LIBPACK_BIN_TO_BUILD and check it.
  4. Search there for the variable option FREECAD_COPY_PLUGINS_BIN_TO_BUILD and check it.
  5. Click on Configure. At the end of the configuration CMake will automatically copy the necessary libraries from the LibPack folder.

Updating the build

FreeCAD is very actively developed. Therefore its source code changes almost daily. New features are added and bugs are fixed. To benefit from these source code changes, you must rebuild your FreeCAD. This is done in two steps:

  1. Updating the source code
  2. Recompilation

Updating the source code

Using a frontend

When using the Git frontend TortoiseGit:

  1. Right-click on your FreeCAD source code folder in the Windows file explorer and select in the context menu Pull.
  2. A dialog will appear. Select there what development branch you want to get. master is the main branch. Therefore use this unless you want to compile a special new feature from a branch that has not yet been merged to master. (For more about Git branches, see Git development process.)

Finally click OK.

Using the command line

Open a terminal (command prompt) and switch there to your source directory. Then type:

git pull https://github.com/FreeCAD/FreeCAD.git master

where master the the name of the main development branch. If you want to get code from another branch, use its name instead of master.

Recompilation

  1. Open the MSVC IDE by double-clicking either on the file FreeCAD.sln or on the file ALL_BUILD.vcxproj in your build folder.
  2. Continue with step 2 from section Building with Visual Studio 15 2017.

Tools

In order to join the FreeCAD development you should compile and install the following tools:

Qt Designer plugin

FreeCAD uses Qt as toolkit for its user interface. All dialogs are setup in UI-files that can be edited using the program Qt Designer that is part of any Qt installation and also included in the LibPack. FreeCAD has its own set of Qt widgets to provide special features like adding a unit to input fields and to set preferences properties.

Installation

To make Qt Designer aware of the FreeCAD widgets, you must

  1. Download the ZIP file. (Compiled using Qt 5.15, see below.)
  2. Extract the DLL file from the ZIP.
  • If you use the LibPack: to the folder
    ~\FreeCADLibs_12.5.4_x64_VC17\bin\designer
    Since there will only be a bin folder and you must first create the designer subfolder.
  • If you have a full Qt installation: you can choose between the folder
    C:\Qt\5.15.2\msvc2019_64\plugins\designer
    or
    C:\Qt\5.15.2\msvc2019_64\bin\designer (you must first create the designer subfolder.)
    (adapt the paths to your installation!).

(Re)Start Qt Designer and check its menu Help → Plugins. If the plugin FreeCAD_widgets.dll is listed as being loaded, you can now design and change FreeCAD's .ui files. If not, you must compile the DLL by yourself.


If you prefer using Qt Creator instead of Qt Designer, the DLL must be placed in this folder:
C:\Qt\Qt5.15.2\Tools\QtCreator\bin\plugins\designer
(Re)Start Qt Creator, switch to the mode Design and then check the menu Tools → Form Editor → About Qt Designer Plugins. If the plugin FreeCAD_widgets.dll is listed as being loaded, you can now design and change FreeCAD's .ui files. If not, you must compile the DLL by yourself.

Compilation

The DLL cannot be loaded as plugin if it was compiled using another Qt version than the one your Qt Designer/Qt Creator is based on. In this case you must compile the DLL by yourself. This is done the following way:

  1. Change to the FreeCAD source folder
    ~\src\Tools\plugins\widget
  2. Open a x64 Native Tool Command Prompt using the Windows Start menu and change within it to the above folder. It is important that it is the x64 version of the command prompt!
  3. Execute this command
    qmake -t vclib plugin.pro
    
    If qmake could not be found, use the full path to it, e.g. for the LibPack it should be this one (adapt it to your installation):
    D:\FreeCAD-build\FreeCADLibs_12.5.4_x64_VC17\bin\qmake -t vclib plugin.pro
    for a full Qt installation it is
    C:\Qt\5.15.2\msvc2019_64\bin\qmake -t vclib plugin.pro
    (adapt the paths to your installation!)
  4. The call of qmake created the file FreeCAD_widgets.vcxproj in the folder ~\src\Tools\plugins\widget. Double-click on it and the MSVC IDE will open.
  5. In the toolbar of the MSVC IDE assure that you use the compilation target Release.
  6. There is a window called Solution Explorer. Right-click there on FreeCAD_widgets and then choose Build.
  7. As result you should now have a FreeCAD_widgets.dll in the folder ~\src\Tools\plugins\widget\release that you can install as plugin as described above.

Thumbnail Provider

FreeCAD has the feature to provide preview thumbnails for *.FCStd files. That means that in the Windows file explorer *.FCStd files are shown with a screenshot of the model it contains. To provide this feature, FreeCAD needs to have the file FCStdThumbnail.dll installed to Windows.

Installation

The DLL is installed this way:

  1. Download this ZIP file and extract it.
  2. Open a Windows command prompt with administrator privileges (these privileges are a requirement).
  3. Change to the folder where the DLL is.
  4. Execute this command
    regsvr32 FCStdThumbnail.dll
    

So check if it works, assure that in FreeCAD the preferences option Save thumbnail into project file when saving document is enabled and save a model. Then view in Windows Explorer the folder of the saved model using a symbol view. You should now see a screenshot of the model in the folder view.

Compilation

To compile the FCStdThumbnail.dll

  1. Change to the FreeCAD source folder
    ~\src\Tools\thumbs\ThumbnailProvider
  2. Open the CMake GUI
  3. Specify there as source folder the one you are currently in.
  4. Use the same folder as build folder.
  5. Click Configure
  6. In the appearing dialog, specify the generator according to the one you want to use. For the standard MS Visual Studio use Visual Studio xx 2yyy where xx is the compiler version and 2yyy the year of its release. It is recommended to use the default option Use default native compilers.
    Note: It is important to specify the correct bit variant. If you have the 64bit variant of LibPack you must also use the x64 compiler.
  7. Click on Generate.
  8. You should now have the file ALL_BUILD.vcxproj in the folder ~\src\Tools\thumbs\ThumbnailProvider. Double-click on it and the MSVC IDE will open.
  9. In the toolbar of the MSVC IDE assure that you use the compilation target Release.
  10. There is a window called Solution Explorer. Right-click there on ALL_BUILD and then choose Build.
  11. As result you should now have a FCStdThumbnail.dll in the folder ~\src\Tools\thumbs\ThumbnailProvider\release that you can install as described above.

Compiling OpenCASCADE

The Libpack comes with a version of OpenCASCADE that is suitable for general use. However, under some circumstances you may wish to compile against an alternate version of OpenCASCADE, such as one of their official releases, or a patched fork.

When compiling OpenCASCADE for FreeCAD note that there is no guarantee that FreeCAD will work with all versions of OpenCASCADE. Note also that when you are using the Netgen library, you must use the a NetGen version that it approved to compile with the OpenCASCADE version you like to compile.

To compile:

  • Then open the CMake GUI to configure the build system in a similar manner to building FreeCAD. These CMake options have to be set:
Variable name Description Default
3RDPARTY_DIR The path to the necessary 3rdparty components like TCL, TK and Freetype. It is recommended to use the folder as input where your used Libpack is. empty
3RDPARTY_FREETYPE_DIR The path to the necessary 3rdparty component Freetype. It is recommended to use the folder as input where your used Libpack is. empty
3RDPARTY_RAPIDJSON_DIR The path to the 3rdparty component RapidJSON. It is recommended to use the folder as input where your used Libpack is. empty
3RDPARTY_TCL_DIR The path to the necessary 3rdparty component TCL. It is recommended to use the folder as input where your used Libpack is. empty
3RDPARTY_TK_DIR The path to the necessary 3rdparty component TK. It is recommended to use the folder as input where your used Libpack is. empty
INSTALL_DIR The output folder when building the target INSTALL. If the build was successful, take the files from this folder to update your LibPack. Windows default program installation folder
USE_RAPIDJSON To compile OpenCASCADE with support for RapidJSON. Enabling this is mandatory in order to get support for the file format glTF. OFF
  • Open the project in Visual Studio and first build the ALL_BUILD and then INSTALL targets in the Release mode.
  • Repeat the build in the Debug mode.

References

See also