Rocket Parachute Size Calculator

From FreeCAD Documentation
Jump to navigation Jump to search
Other languages:
English • ‎français • ‎polski

Rocket Calculator.svg Rocket Parachute Size Calculator

Menu location
Rocket → Calculators → Parachute Size Calculator
Workbenches
Rocket Workbench
Default shortcut
None
Introduced in version
0.19
See also
None

Description

This calculator determines the parachute size required to achieve the desired descent rate based on the parachute parameters.

The desired descent rate depends on your needs. As a rule of thumb, the main parachute should slow the rocket to approximately while the drone should allow the parachute to descend much faster - . The editor has presets for these, with the value for the drogue being in the middle of the range. You can set a custom descent rate to suit your needs.

A key value for determining the descent rate is the coefficient of drag (). The exact value of this will depend on a variety of factors including the shape of the parachute. Presets are provided for parachutes cut from a flat piece of material (round, square, hexagonal) such as those provided by many kits, and for a true dome shape. Your parachute manufacturer may provide a better value for this coefficient.

Usage

Calc parachute size.png

  1. There are several ways to invoke the command:
    • Press the Rocket Calculator.svg Parachute Size Calculator button.
    • Select the Rocket → Calculators → Rocket Calculator.svg Parachute Size Calculator option from the menu.
  2. Enter the weight of your rocket and parameters for your parachute.

Calculation

Parachute size is determined by the mass of the rocket, desired descent rate, and drag characteristics of the parachute. The calculation is a two step process. First the area of the parachute is calculated:

where

the mass of the rocket
desired terminal velocity
drag coefficient of the parachute
air density, average at sea level in at
acceleration due to gravity in

The diameter is then calculated from the surface area based on the shape.

For hexagonal parachutes:

For square parachutes, the diameter is the length of each side

For all other parachutes, the shape is assumed to be circular

Units

Calculations are done using metric units, but will display in your preferred units. Values can also be entered using any supported units by including the units with the value (eg 5 oz, or 23.2 g)

References

  1. http://www.rocketmime.com/rockets/descent.html
  2. https://descentratecalculator.onlinetesting.net/
  3. https://www.math.net/area-of-a-hexagon