Программирование полигональных сеток

From FreeCAD Documentation
Revision as of 08:45, 28 May 2020 by FuzzyBot (talk | contribs) (Updating to match new version of source page)

Введение

Прежде всего вы должны импортировать Mesh модуль:

import Mesh

После этого вы получаете доступ к Mesh модулю и классам Mesh которые сообщаются с с функциями FreeCAD C++ Mesh-Kernel.

Создание и Загрузка

Чтобы создать простейший полигональный (сеточный) объект, просто используйте стандартный конструктор:

mesh = Mesh.Mesh()

Вы также можете создать объект из файла

mesh = Mesh.Mesh('D:/temp/Something.stl')

Какие файловые форматы вы можете использовать для создания полигиональных объектов написано здесь.

Или создайте его из множества треугольников, задав их вершины:

planarMesh = [
# triangle 1
[-0.5000, -0.5000, 0.0000], [0.5000, 0.5000, 0.0000], [-0.5000, 0.5000, 0.0000],
#triangle 2
[-0.5000, -0.5000, 0.0000], [0.5000, -0.5000, 0.0000], [0.5000, 0.5000, 0.0000],
]
planarMeshObject = Mesh.Mesh(planarMesh)
Mesh.show(planarMeshObject)

Mesh-Ядро заботится о создании топологического правильной структуры данных сортируя совпадающие точки и края вместе.

Позже вы увидете как можно протестировать и изучить полигиональные(сеточные) данные.

top

Моделирование

Для создания обычной геометрии вы можете использовать Python сценарий BuildRegularGeoms.py.

To create regular geometries you can use the Python script BuildRegularGeoms.py.

import BuildRegularGeoms

Этот сценарий предоставляет методы для определения простых тел вращения, таких как сферы, элипсоиды, цилиндры, тороиды и конусы. И он также обладает методом для создания простого куба. Чтобы создать тороид, например, следующим образом:

t = BuildRegularGeoms.Toroid(8.0, 2.0, 50) # list with several thousands triangles
m = Mesh.Mesh(t)

Первые два параметра определяют радиусы тороида а третий параметр фактор подвыборки , как много треугольников будет создано. Чем выше это значение тем сглаженней и наоброт чем ниже тем грубее тело. Mesh классы предоставляют набор логических функций которые могут быть использовыны в целях моделирования. Они обеспечивают объединение, пересечение и вычитание двух полигиональных объектов.

m1, m2              # are the input mesh objects
m3 = Mesh.Mesh(m1)  # create a copy of m1
m3.unite(m2)        # union of m1 and m2, the result is stored in m3
m4 = Mesh.Mesh(m1)
m4.intersect(m2)    # intersection of m1 and m2
m5 = Mesh.Mesh(m1)
m5.difference(m2)   # the difference of m1 and m2
m6 = Mesh.Mesh(m2)
m6.difference(m1)   # the difference of m2 and m1, usually the result is different to m5

Наконец, полный пример, который вычисляет пересечение сферы и цилиндра, пересекающего сферу.

import Mesh, BuildRegularGeoms
sphere = Mesh.Mesh(BuildRegularGeoms.Sphere(5.0, 50))
cylinder = Mesh.Mesh(BuildRegularGeoms.Cylinder(2.0, 10.0, True, 1.0, 50))
diff = sphere
diff = diff.difference(cylinder)
d = FreeCAD.newDocument()
d.addObject("Mesh::Feature", "Diff_Sphere_Cylinder").Mesh = diff
d.recompute()

top

Экспортирование

Вы также можете записать полигональную модель как модуль Python:

m.write("D:/Develop/Projekte/FreeCAD/FreeCAD_0.7/Mod/Mesh/SavedMesh.py")
import SavedMesh
m2 = Mesh.Mesh(SavedMesh.faces)

top

Всякая всячина

Трудно, широко использовать источники полигональной модели связанные с сценарием, все это тестирование написания сценариев для полигонального модуля В этих тестах модуля буквально все методы вызываются и все свойства/атрибуты вымышлены. Так что если вы достаточно смелы, взгляните на Unit Test module.

An extensive (though hard to use) source of Mesh related scripting are the unit test scripts of the Mesh-Module. In this unit tests literally all methods are called and all properties/attributes are tweaked. So if you are bold enough, take a look at the Unit Test module.

See also Mesh API

top